Hydrogen diffusion into three metallurgical microstructures of a C–Mn X65 and low alloy F22 sour service steel pipelines

[1]  P. Fassina,et al.  Hydrogen charging of carbon and low alloy steel by electrochemical methods , 2023, Journal of Applied Electrochemistry.

[2]  P. Fassina,et al.  Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels , 2013 .

[3]  F. Bolzoni,et al.  Measurement of lattice and apparent diffusion coefficient of hydrogen in X65 and F22 pipeline steels , 2013 .

[4]  E. Pereloma,et al.  Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels , 2013 .

[5]  V. Olden,et al.  Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint – Experiments and FE simulations , 2012 .

[6]  G. Frankel,et al.  Hydrogen Permeation and Corrosion Fatigue Crack Growth Rates of X65 Pipeline Steel Exposed to Acid Brines Containing Thiosulfate or Hydrogen Sulfide , 2012 .

[7]  E. Pereloma,et al.  2D modelling of the effect of grain size on hydrogen diffusion in X70 steel , 2012 .

[8]  P. Fassina,et al.  Influence of hydrogen and low temperature on mechanical behaviour of two pipeline steels , 2012 .

[9]  Y. F. Cheng,et al.  Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking , 2011 .

[10]  X. Feaugas,et al.  Study of the hydrogen diffusion and segregation into Fe-C-Mo martensitic HSLA steel using electrochemical permeation test , 2010 .

[11]  Y. F. Cheng,et al.  Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking , 2009 .

[12]  Xiaogang Li,et al.  Hydrogen-induced cracking and healing behaviour of X70 steel , 2009 .

[13]  KyooYoung Kim,et al.  Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels , 2008 .

[14]  KyooYoung Kim,et al.  Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel , 2008 .

[15]  Y. F. Cheng Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking , 2007 .

[16]  V. P. Ramunni,et al.  Interaction of hydrogen with the microstructure of low-carbon steel , 2006 .

[17]  T. Zakroczymski Adaptation of the electrochemical permeation technique for studying entry, transport and trapping of hydrogen in metals , 2006 .

[18]  S. Serna,et al.  Electrochemical technique applied to evaluate the hydrogen permeability in microalloyed steels , 2005 .

[19]  L. Péter,et al.  Theoretical analysis of entrapment kinetics in hydrogen permeation experiments , 2003 .

[20]  H. S. Khatak,et al.  Studies on hydrogen permeability of 2.25% Cr–1% Mo ferritic steel: correlation with microstructure , 2001 .

[21]  T. Zakroczymski Electrochemical determination of hydrogen in metals , 1999 .

[22]  Jiann-Kuo Wu,et al.  The influence of microstructure on hydrogen transport in carbon steels , 1996 .

[23]  A. Turnbull,et al.  Analysis of hydrogen diffusion and trapping in a 13% chromium martensitic stainless steel , 1989 .

[24]  J. Leblond,et al.  A general mathematical description of hydrogen diffusion in steels—I. Derivation of diffusion equations from boltzmann-type transport equations , 1983 .

[25]  J. Leblond,et al.  A general mathematical description of hydrogen diffusion in steels—II. Numerical study of permeation and determination of trapping parameters , 1983 .

[26]  M. Iino A more generalized analysis of hydrogen trapping , 1982 .

[27]  M. Iino Analysis of irreversible hydrogen trapping , 1982 .

[28]  L. Nanis,et al.  Mathematics of the Electrochemical Extraction of Hydrogen from Iron , 1972 .

[29]  Z. Stachurski,et al.  The adsorption and diffusion of electrolytic hydrogen in palladium , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  P. Fassina,et al.  Materials behavior in extreme conditions: influence of large amounts of H2S on steel toughness in low temperature environments , 2010 .

[31]  Marina Cabrini,et al.  Effect of hydrogen diffusion on environmental assisted cracking of pipeline steels under cathodic protection [Effetto della diffusione dell'idrogeno sui fenomeni di environmental assisted cracking di acciai per pipeline in condizioni di protezione catodic , 2008 .

[32]  Preet M. Singh,et al.  Hydrogen Production And Permeation In Near-Neutral Ph Environments , 2008 .

[33]  Marina Cabrini,et al.  Effect of microctructure on hydrogen diffusion in carbon steels [Effetto della microstruttura sulla diffusione dell'idrogeno in acciai al carbonio per pipeline] , 2003 .

[34]  M. Cowgill New bookHydrogen transport and cracking in metals: Edited by Alan Turnbull (The Institute of Materials, London, 1995), 344 pages, $160.00 (hardcover) (available in the USA from Ashgate Publishing Co., Brookfield, Vermont) , 1996 .

[35]  A. Turnbull,et al.  THE EFFECT OF H2S CONCENTRATION AND PH ON HYDROGEN PERMEATION IN AISI 410 STAINLESS STEEL IN 5% NACL , 1989 .

[36]  J. B. LEBLONDt,et al.  OVERVIEW NO. 29 – A GENERAL MATHEMATICAL DESCRIPTION OF HYDROGEN DIFFUSION IN STEELS—I. DERIVATION OF DIFFUSION EQUATIONS FROM BOLTZMANN-TYPE TRANSPORT EQUATIONS , 1986 .

[37]  S. H. Goods,et al.  Overview No. 1: The nucleation of cavities by plastic deformation , 1979 .

[38]  R. A. Oriani,et al.  The diffusion and trapping of hydrogen in steel , 1970 .