Higher spin realization of the DS/CFT correspondence

We conjecture that Vasiliev's theory of higher spin gravity in four-dimensional de Sitter space (dS) is holographically dual to a three-dimensional conformal field theory (CFT) living on the spacelike boundary of dS at future timelike infinity. The CFT is the Euclidean Sp(N) vector model with anticommuting scalars. The free CFT flows under a double-trace deformation to an interacting CFT in the IR. We argue that both CFTs are dual to Vasiliev dS gravity but with different future boundary conditions on the bulk scalar field. Our analysis rests heavily on analytic continuations of bulk and boundary correlators in the proposed duality relating the O(N) model with Vasiliev gravity in AdS.

[1]  M. Vasiliev Consistent equations for interacting gauge fields of all spins in 3+1 dimensions , 1990 .

[2]  Xi Dong,et al.  Micromanaging de Sitter holography , 2010, 1005.5403.

[3]  AdS dual of the critical O(N) vector model , 2002, hep-th/0210114.

[4]  AdS/CFT four-point functions: How to succeed at z-integrals without really trying , 1999, hep-th/9905049.

[5]  Scalar field corrections to AdS4 gravity from higher spin gauge theory , 2003, hep-th/0303202.

[6]  E. Witten Quantization of Chern-Simons gauge theory with complex gauge group , 1991 .

[7]  E. Witten Quantum Gravity In De Sitter Space , 2001, hep-th/0106109.

[8]  Inflation and the dS/CFT Correspondence , 2001, hep-th/0110087.

[9]  K. Wilson Quantum field-theory models in less than 4 dimensions , 1973 .

[10]  J. Maldacena Einstein Gravity from Conformal Gravity , 2011, 1105.5632.

[11]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[12]  D. Stanford,et al.  Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT , 2011, 1104.2621.

[13]  Alejandra Castro,et al.  A de Sitter Farey Tail , 2011, 1103.4620.

[14]  J. Maldacena,et al.  On graviton non-gaussianities during inflation , 2011, 1104.2846.

[15]  Thomas Hartman,et al.  Holography at an extremal De Sitter horizon , 2009, 0910.4587.

[16]  G. Dunne Negative-dimensional groups in quantum physics , 1989 .

[17]  E. Silverstein AdS and dS Entropy from String Junctions or The Function of Junction Conjunctions 1 , 2003 .

[18]  A. Kennedy,et al.  Spinors in Negative Dimensions , 1982 .

[19]  Ads/CFT correspondence and symmetry breaking , 1999, hep-th/9905104.

[20]  Higher Spin Gauge Theories: Star-Product and AdS Space , 1999, hep-th/9910096.

[21]  M. Vasiliev Free Massless Fields of Arbitrary Spin in the de Sitter Space and Initial Data for a Higher Spin Superalgebra , 1987 .

[22]  Paul L. McFadden,et al.  Cosmological 3-point correlators from holography , 2011, 1104.3894.

[23]  Dionysios Anninos,et al.  A De Sitter hoedown , 2010, 1002.1717.

[24]  On duality and negative dimensions in the theory of Lie groups and symmetric spaces , 2010, 1011.0151.

[25]  Edward Witten,et al.  (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .

[26]  N. Boulanger,et al.  On The Uniqueness of Minimal Coupling in Higher-Spin Gauge Theory , 2008, 0805.2764.

[27]  X. Yin,et al.  On Higher Spin Gauge Theory and the Critical O(N) Model , 2011, 1105.4011.

[28]  A. LeClair 3D Ising and other models from symplectic fermions , 2006, cond-mat/0610817.

[29]  Andrew Strominger The dS/CFT correspondence , 2001 .

[30]  Curiosities at c=-2 , 1995, hep-th/9510149.

[31]  E. Sezgin,et al.  Real forms of complex higher spin field equations and new exact solutions , 2007, 0706.2983.

[32]  S. Detournay,et al.  Holography for a De Sitter-Esque geometry , 2011, 1102.3178.

[33]  D. Robinson,et al.  Lorentz symmetric quantum field theory for symplectic fermions , 2009, 0903.2399.

[34]  A. Strominger,et al.  Asymptotic symmetries and charges in de Sitter space , 2010, 1009.4730.

[35]  POLYMERS AND PERCOLATION IN TWO DIMENSIONS AND TWISTED N=2 SUPERSYMMETRY , 1991, hep-th/9111007.

[36]  S. Hawking,et al.  Cosmological Event Horizons, Thermodynamics, and Particle Creation , 1977 .

[37]  V. Balasubramanian,et al.  Notes on de Sitter space and holography , 2002 .

[38]  The trouble with de Sitter space , 2002, hep-th/0212209.

[39]  X. Yin,et al.  Higher spins in AdS and twistorial holography , 2010, 1004.3736.

[40]  Notes On Higher Spin Symmetries , 2002, hep-th/0201019.

[41]  A Universal result on central charges in the presence of double trace deformations , 2002, hep-th/0212138.

[42]  A. Achúcarro,et al.  A Chern-Simons Action for Three-Dimensional anti-De Sitter Supergravity Theories , 1986 .

[43]  X. Yin,et al.  Higher spin gauge theory and holography: the three-point functions , 2009, 0912.3462.

[44]  M. Neubert,et al.  Semi-Lorentz invariance, unitarity, and critical exponents of symplectic fermion models , 2007, 0705.4657.

[45]  A. Strominger,et al.  Future boundary conditions in de Sitter space , 2011, 1106.1175.

[46]  Massless higher spins and holography , 2002, hep-th/0205131.