Langmuir rogue waves in electron-positron plasmas

Progress in understanding the nonlinear Langmuir rogue waves which accompany collisionless electron-positron (e-p) plasmas is presented. The nonlinearity of the system results from the nonlinear coupling between small, but finite, amplitude Langmuir waves and quasistationary density perturbations in an e-p plasma. The nonlinear Schrodinger equation is derived for the Langmuir waves’ electric field envelope, accounting for small, but finite, amplitude quasistationary plasma slow motion describing the Langmuir waves’ ponderomotive force. Numerical calculations reveal that the rogue structures strongly depend on the electron/positron density and temperature, as well as the group velocity of the envelope wave. The present study might be helpful to understand the excitation of nonlinear rogue pulses in astrophysical environments, such as in active galactic nuclei, in pulsar magnetospheres, in neutron stars, etc.

[1]  P. Shukla,et al.  Three-dimensional electrostatic waves in a nonuniform quantum electron-positron magnetoplasma , 2008 .

[2]  T. Cattaert,et al.  Oblique propagation of large amplitude electromagnetic solitons in pair plasmas , 2005 .

[3]  L. Stenflo,et al.  Rogue waves in the atmosphere , 2009, Journal of Plasma Physics.

[4]  L. Stenflo,et al.  Exciting rogue waves , 2009 .

[5]  F. Michel Theory of pulsar magnetospheres , 1982 .

[6]  Alan S. Osborne,et al.  THE FOURTEENTH 'AHA HULIKO' A HAWAIIAN WINTER WORKSHOP , 2005 .

[7]  Vladimir V. Konotop,et al.  Vector rogue waves in binary mixtures of Bose-Einstein condensates , 2010 .

[8]  A. Hasegawa,et al.  A Note on the Ion Surface Waves in a Pair-Ion Plasma , 2005 .

[9]  L. Stenflo,et al.  Nonlinear wave conversion in electron-positron plasmas , 1985 .

[10]  R. Sabry,et al.  Cylindrical and spherical ion-acoustic envelope solitons in multicomponent plasmas with positrons. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  M. Shats,et al.  Capillary rogue waves. , 2010, Physical review letters.

[12]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[13]  Efim Pelinovsky,et al.  Physical Mechanisms of the Rogue Wave Phenomenon , 2003 .

[14]  E. Heller,et al.  Freak waves in the linear regime: a microwave study. , 2009, Physical review letters.

[15]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[16]  P. Shukla,et al.  Numerical investigation of the instability and nonlinear evolution of narrow-band directional ocean waves. , 2009, Physical review letters.

[17]  S. El-Labany,et al.  Nonlinear dynamics associated with rotating magnetized electron–positron–ion plasmas , 2010 .

[18]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[19]  F. Arecchi,et al.  Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. , 2009, Physical review letters.

[20]  Greaves,et al.  An electron-positron beam-plasma experiment. , 1995, Physical review letters.

[21]  D. Osterbrock Active Galactic Nuclei a , 1984 .

[22]  V. Konotop,et al.  Matter rogue waves , 2009 .

[23]  J. Soto-Crespo,et al.  Extreme waves that appear from nowhere: On the nature of rogue waves , 2009 .

[24]  Adrian Ankiewicz,et al.  Solitons : nonlinear pulses and beams , 1997 .

[25]  Kharif Christian,et al.  Rogue Waves in the Ocean , 2009 .

[26]  P. McClintock,et al.  Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. , 2008, Physical review letters.

[27]  J. Soto-Crespo,et al.  How to excite a rogue wave , 2009 .

[28]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[29]  V. Lukash The very early Universe , 1999 .

[30]  N. Akhmediev,et al.  Are rogue waves robust against perturbations , 2009 .

[31]  W. Perrie,et al.  Nonlinear Ocean Waves , 1997 .