Performance of time delay estimation in a cognitive radar

A cognitive radar adapts the transmit waveform in response to changes in the radar and target environment. In this work, we analyze the recently proposed sub-Nyquist cognitive radar wherein the total transmit power in a multi-band cognitive waveform remains the same as its full-band conventional counterpart. For such a system, we derive lower bounds on the mean-squared-error (MSE) of a single-target time delay estimate. We formulate a procedure to select the optimal bands, and recommend distribution of the total power in different bands to enhance the accuracy of delay estimation. In particular, using Cramér-Rao bounds, we show that equi-width subbands in cognitive radar always have better delay estimation than the conventional radar. Further analysis using Ziv-Zakai bound reveals that cognitive radar performs well in low signal-to-noise (SNR) regions.

[1]  Simon Haykin,et al.  Cognitive Dynamic Systems: Perception-action Cycle, Radar and Radio , 2012 .

[2]  J. Ianniello,et al.  Time delay estimation via cross-correlation in the presence of large estimation errors , 1982 .

[3]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[4]  Alexander M. Haimovich,et al.  Noncoherent MIMO Radar for Location and Velocity Estimation: More Antennas Means Better Performance , 2010, IEEE Transactions on Signal Processing.

[5]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[6]  A. Weiss,et al.  Fundamental limitations in passive time delay estimation--Part I: Narrow-band systems , 1983 .

[7]  F. Gini,et al.  Design of a cognitive radar for operation in spectrally dense environments , 2013, 2013 IEEE Radar Conference (RadarCon13).

[8]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[9]  Brian M. Sadler,et al.  A Survey of Time Delay Estimation Performance Bounds , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[10]  Jacob Ziv,et al.  Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.

[11]  Yonina C. Eldar,et al.  Cognitive sub-Nyquist hardware prototype of a collocated MIMO radar , 2016, 2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).

[12]  J. R. Guerci,et al.  Cognitive radar: A knowledge-aided fully adaptive approach , 2010, 2010 IEEE Radar Conference.

[13]  Carl W. Helstrom,et al.  Elements of signal detection and estimation , 1994 .

[14]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[15]  Tianyao Huang,et al.  Cramer-Rao Lower Bounds for the Joint Delay-Doppler Estimation of an Extended Target , 2015, IEEE Transactions on Signal Processing.

[16]  Fulvio Gini,et al.  Spectrum sensing and sharing for cognitive radars , 2016 .

[17]  Hao He,et al.  Waveform design with stopband and correlation constraints for cognitive radar , 2010, 2010 2nd International Workshop on Cognitive Information Processing.

[18]  Yonina C. Eldar,et al.  A Lower Bound on the Bayesian MSE Based on the Optimal Bias Function , 2008, IEEE Transactions on Information Theory.

[19]  Jacob Ziv,et al.  Improved Lower Bounds on Signal Parameter Estimation , 1975, IEEE Trans. Inf. Theory.

[20]  Vlad M. Chiriac,et al.  Ziv — Zakai lower bound on target localization estimation in MIMO radar systems , 2010, 2010 IEEE Radar Conference.

[21]  Yonina C. Eldar,et al.  Xampling: Signal Acquisition and Processing in Union of Subspaces , 2009, IEEE Transactions on Signal Processing.

[22]  Alexander M. Haimovich,et al.  Ziv–Zakai Bound for Joint Parameter Estimation in MIMO Radar Systems , 2015, IEEE Transactions on Signal Processing.

[23]  Joseph Tabrikian,et al.  Optimal Cognitive Beamforming for Target Tracking in MIMO Radar/Sonar , 2015, IEEE Journal of Selected Topics in Signal Processing.

[24]  Junzhou Huang,et al.  Learning with structured sparsity , 2009, ICML '09.

[25]  Joel T. Johnson,et al.  Cognitive Radar Framework for Target Detection and Tracking , 2015, IEEE Journal of Selected Topics in Signal Processing.

[26]  H. Vincent Poor,et al.  Time-Delay Estimation in Dispersed Spectrum Cognitive Radio Systems , 2009, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[27]  L. Varshney Radar Principles , 2005 .

[28]  Yossef Steinberg,et al.  Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.

[29]  S. Haykin,et al.  Cognitive radar: a way of the future , 2006, IEEE Signal Processing Magazine.

[30]  A. Aubry,et al.  A new radar waveform design algorithm with improved feasibility for spectral coexistence , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[31]  Aleksandar Dogandzic,et al.  Cramer-Rao bounds for estimating range, velocity, and direction with an active array , 2001, IEEE Trans. Signal Process..

[32]  H. Vincent Poor,et al.  Time Delay Estimation in Cognitive Radio Systems , 2009, ArXiv.

[33]  Shannon D. Blunt,et al.  Radar Spectrum Engineering and Management: Technical and Regulatory Issues , 2015, Proceedings of the IEEE.

[34]  Yonina C. Eldar,et al.  Towards sub-nyquist cognitive radar , 2016, 2016 IEEE Radar Conference (RadarConf).

[35]  Ariela Zeira,et al.  Realizable lower bounds for time delay estimation , 1993, IEEE Trans. Signal Process..