Clear and Compress: Computing Persistent Homology in Chunks
暂无分享,去创建一个
Ulrich Bauer | Michael Kerber | Jan Reininghaus | Michael Kerber | U. Bauer | Jan Reininghaus | Ulrich Bauer
[1] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[2] Kim Steenstrup Pedersen,et al. The Nonlinear Statistics of High-Contrast Patches in Natural Images , 2003, International Journal of Computer Vision.
[3] Primoz Skraba,et al. Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.
[4] Ulrich Bauer,et al. Persistence in discrete Morse theory , 2011 .
[5] Dmitriy Morozov,et al. Dualities in persistent (co)homology , 2011, ArXiv.
[6] R. Forman. Morse Theory for Cell Complexes , 1998 .
[7] Afra Zomorodian,et al. Computing Persistent Homology , 2004, SCG '04.
[8] Afra Zomorodian,et al. Multicore Homology , 2012 .
[9] Jean-Daniel Boissonnat,et al. The Compressed Annotation Matrix: An Efficient Data Structure for Computing Persistent Cohomology , 2013, ESA.
[10] Ulrich Bauer,et al. Optimal Topological Simplification of Discrete Functions on Surfaces , 2012, Discret. Comput. Geom..
[11] Leonidas J. Guibas,et al. Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.
[12] Herbert Edelsbrunner,et al. The Medusa of Spatial Sorting: Topological Construction , 2012, ArXiv.
[13] Chao Chen,et al. An output-sensitive algorithm for persistent homology , 2011, SoCG '11.
[14] Chao Chen,et al. Persistent Homology Computation with a Twist , 2011 .
[15] Herbert Edelsbrunner,et al. Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[16] Primoz Skraba,et al. A spectral sequence for parallelized persistence , 2011, ArXiv.
[17] Ingrid Hotz,et al. Noname manuscript No. (will be inserted by the editor) Efficient Computation of 3D Morse-Smale Complexes and Persistent Homology using Discrete Morse Theory , 2022 .