Clear and Compress: Computing Persistent Homology in Chunks

We present a parallel algorithm for computing the persistent homology of a filtered chain complex. Our approach differs from the commonly used reduction algorithm by first computing persistence pairs within local chunks, then simplifying the unpaired columns, and finally applying standard reduction on the simplified matrix. The approach generalizes a technique by Gunther et al., which uses discrete Morse Theory to compute persistence; we derive the same worst-case complexity bound in a more general context. The algorithm employs several practical optimization techniques, which are of independent interest. Our sequential implementation of the algorithm is competitive with state-of-the-art methods, and we further improve the performance through parallel computation.

[1]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[2]  Kim Steenstrup Pedersen,et al.  The Nonlinear Statistics of High-Contrast Patches in Natural Images , 2003, International Journal of Computer Vision.

[3]  Primoz Skraba,et al.  Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.

[4]  Ulrich Bauer,et al.  Persistence in discrete Morse theory , 2011 .

[5]  Dmitriy Morozov,et al.  Dualities in persistent (co)homology , 2011, ArXiv.

[6]  R. Forman Morse Theory for Cell Complexes , 1998 .

[7]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[8]  Afra Zomorodian,et al.  Multicore Homology , 2012 .

[9]  Jean-Daniel Boissonnat,et al.  The Compressed Annotation Matrix: An Efficient Data Structure for Computing Persistent Cohomology , 2013, ESA.

[10]  Ulrich Bauer,et al.  Optimal Topological Simplification of Discrete Functions on Surfaces , 2012, Discret. Comput. Geom..

[11]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[12]  Herbert Edelsbrunner,et al.  The Medusa of Spatial Sorting: Topological Construction , 2012, ArXiv.

[13]  Chao Chen,et al.  An output-sensitive algorithm for persistent homology , 2011, SoCG '11.

[14]  Chao Chen,et al.  Persistent Homology Computation with a Twist , 2011 .

[15]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[16]  Primoz Skraba,et al.  A spectral sequence for parallelized persistence , 2011, ArXiv.

[17]  Ingrid Hotz,et al.  Noname manuscript No. (will be inserted by the editor) Efficient Computation of 3D Morse-Smale Complexes and Persistent Homology using Discrete Morse Theory , 2022 .