Power system set membership state estimation

In this paper, a power system set membership state estimator (SMSE) in a bounded-error context is proposed based on interval constraint propagation. Its effectiveness is tested with the IEEE 4-bus, 14-bus, 30-bus, 118-bus, and 300-bus systems. Comparison is made between SMSE and typical existing methods. Simulation results show that the proposed method is effective in obtaining a guaranteed and small envelop of the state and measurement and is also time efficient.

[1]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part II: Approximate Model , 1970 .

[2]  Ali Abur,et al.  A robust WLAV state estimator using transformations , 1992 .

[3]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part I: Exact Model , 1970 .

[4]  Malcolm Irving,et al.  Analysis of confidence bounds in power system state estimation with uncertainty in both measurements and parameters , 2006 .

[5]  Karel J. Keesman,et al.  Identification and prediction propagation of uncertainty in models with bounded noise , 1989 .

[6]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[7]  N. S. Vichare,et al.  Robust state estimation based on projection statistics [of power systems] , 1996 .

[8]  E. Walter,et al.  Exact recursive polyhedral description of the feasible parameter set for bounded-error models , 1989 .

[9]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[10]  Eric Walter,et al.  Set inversion via interval analysis for nonlinear bounded-error estimation , 1993, Autom..

[11]  Lamine Mili,et al.  Robust state estimation based on projection statistics , 1996 .

[12]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[13]  A. Ekpenyong,et al.  Frequency-domain adaptive filtering: a set-membership approach , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[14]  J. P. Norton,et al.  Identification and application of bounded-parameter models , 1985, Autom..

[15]  Patrick L. Combettes,et al.  Set theoretic estimation by random search , 1991, IEEE Trans. Signal Process..

[16]  Malcolm Irving,et al.  Uncertainty modelling in power system state estimation , 2005 .

[17]  M. Vidyasagar,et al.  Bad Data Rejection Properties of Weughted Least Absolute Value Techniques Applied to Static State Estimation , 1982, IEEE Transactions on Power Apparatus and Systems.

[18]  Eric Walter,et al.  OMNE: A new robust membership-set estimator for the parameters of nonlinear models , 1987, Journal of Pharmacokinetics and Biopharmaceutics.

[19]  M. Milanese,et al.  Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators , 1982 .

[20]  Luc Jaulin,et al.  Interval constraint propagation with application to bounded-error estimation , 2000, Autom..

[21]  Fulin Zhuang,et al.  Bad Data Suppression in Power System State Estimation with a Variable Quadratic-Constant Criterion , 1985, IEEE Power Engineering Review.

[22]  F. Schweppe,et al.  Control of linear dynamic systems with set constrained disturbances , 1971 .

[23]  Yih-Fang Huang,et al.  Frequency-Domain Set-Membership Filtering and Its Applications , 2007, IEEE Transactions on Signal Processing.

[24]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[25]  Hua Wei,et al.  An interior point method for power system weighted nonlinear L/sub 1/ norm static state estimation , 1998 .

[26]  Ali Abur,et al.  A bad data identification method for linear programming state estimation , 1990 .

[27]  Eric Walter,et al.  Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis , 1993 .

[28]  E. Handschin,et al.  Bad data analysis for power system state estimation , 1975, IEEE Transactions on Power Apparatus and Systems.

[29]  R. Baldick,et al.  Implementing nonquadratic objective functions for state estimation and bad data rejection , 1997 .

[30]  Bikash C. Pal,et al.  Iteratively reweighted least-squares implementation of the WLAV state-estimation method , 2004 .

[31]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[32]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[33]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.

[34]  Ronald K. Pearson,et al.  Block-sequential algorithms for set-theoretic estimation , 1988 .

[35]  M. B. Clowes,et al.  On Seeing Things , 1971, Artif. Intell..

[36]  Stephen P. Boyd,et al.  Identification of Systems with Parametric and Nonparametric Uncertainty , 1990, 1990 American Control Conference.

[37]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part III: Implementation , 1970 .

[38]  Stephen P. Boyd,et al.  Set-membership identification of systems with parametric and nonparametric uncertainty , 1992 .

[39]  Luc Jaulin,et al.  Robust set-membership state estimation; application to underwater robotics , 2009, Autom..

[40]  Yih-Fang Huang,et al.  Set-membership adaptive equalization and an updator-shared implementation for multiple channel communications systems , 1998, IEEE Trans. Signal Process..

[41]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[42]  Yih-Fang Huang,et al.  BEACON: an adaptive set-membership filtering technique with sparse updates , 1999, IEEE Trans. Signal Process..

[43]  P. L. Combettes The foundations of set theoretic estimation , 1993 .

[44]  M. Irving,et al.  A comparative study of two methods for uncertainty analysis in power system State estimation , 2005, IEEE Transactions on Power Systems.

[45]  Luc Jaulin A Nonlinear Set Membership Approach for the Localization and Map Building of Underwater Robots , 2009, IEEE Transactions on Robotics.

[46]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..