The adaptive significance of insect gall morphology

[1]  Shigeyuki Aoki,et al.  Self-sacrificing gall repair by aphid nymphs , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[2]  Jean-Yves Rasplus,et al.  Mutualists with attitude: coevolving fig wasps and figs , 2003 .

[3]  A. Buckling,et al.  The role of parasites in sympatric and allopatric host diversification , 2002, Nature.

[4]  M. Schwarz,et al.  Phylogenetics of Australian Acacia thrips: the evolution of behaviour and ecology. , 2002, Molecular phylogenetics and evolution.

[5]  H. Danks Modification of adverse conditions by insects , 2002 .

[6]  M. Pagel,et al.  EVOLUTIONARY SHIFTS BETWEEN HOST OAK SECTIONS AND HOST‐PLANT ORGANS IN ANDRICUS GALLWASPS , 2002, Evolution; international journal of organic evolution.

[7]  W. Foster,et al.  Soldier behaviour and division of labour in the aphid genus Pemphigus (Hemiptera, Aphididae) , 2002, Insectes Sociaux.

[8]  J. Thompson,et al.  Geographic structure and dynamics of coevolutionary selection , 2002, Nature.

[9]  C. V. von Dohlen,et al.  Phylogenetics and evolution of the eastern Asian-eastern North American disjunct aphid tribe, Hormaphidini (Hemiptera: Aphididae). , 2002, Molecular phylogenetics and evolution.

[10]  H. Godfray,et al.  Spatial heterogeneity in risk of secondary parasitism in a natural population of an aphid parasitoid , 2002 .

[11]  H. Krenn,et al.  Origin of a complex key innovation in an obligate insect–plant mutualism , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G. McVean,et al.  Use of population genetic data to infer oviposition behaviour: species–specific patterns in four oak gallwasps (Hymenoptera: Cynipidae) , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  A. Bond,et al.  Visual predators select for crypticity and polymorphism in virtual prey , 2002, Nature.

[14]  M. Rausher Co-evolution and plant resistance to natural enemies , 2001, Nature.

[15]  C. A. Machado,et al.  Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  Douglas W. Yu Parasites of mutualisms , 2001 .

[17]  Mark Pagel,et al.  Statistical analysis of comparative data , 2000 .

[18]  J. Yukawa Synchronization of gallers with host plant phenology , 2000, Population Ecology.

[19]  M. Crawley,et al.  Quantitative webs as a means of assessing the impact of alien insects. , 2000, The Journal of animal ecology.

[20]  R. Gomulkiewicz,et al.  Hot Spots, Cold Spots, and the Geographic Mosaic Theory of Coevolution , 2000, The American Naturalist.

[21]  K. R. Blanche Diversity of insect‐induced galls along a temperature– rainfall gradient in the tropical savannah region of the Northern Territory, Australia , 2000 .

[22]  Frank Polymorphism of attack and defense. , 2000, Trends in ecology & evolution.

[23]  K. Schönrogge,et al.  The protein content of tissues in cynipid galls (Hymenoptera: Cynipidae): Similarities between cynipid galls and seeds , 2000 .

[24]  J. Leebens-Mack,et al.  Forty million years of mutualism: evidence for eocene origin of the yucca-yucca moth association. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  B. Crespi,et al.  The Behavioral Ecology and Evolution of Kleptoparasitism in Australian Gall Thrips , 1999 .

[26]  C. Gratton,et al.  DOES "ENEMY-FREE SPACE" EXIST? EXPERIMENTAL HOST SHIFTS OF AN HERBIVOROUS FLY , 1999 .

[27]  B. Crespi,et al.  COMPARATIVE ANALYSIS OF GALL MORPHOLOGY IN AUSTRALIAN GALL THRIPS: THE EVOLUTION OF EXTENDED PHENOTYPES , 1998, Evolution; international journal of organic evolution.

[28]  J. Bronstein,et al.  Ecology and Evolution of a Tritrophic Interaction@@@Evolutionary Ecology across Three Trophic Levels: Goldenrods, Gallmakers, and Natural Enemies , 1998 .

[29]  G. Stone,et al.  The structure of cynipid oak galls: patterns in the evolution of an extended phenotype , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  K. Hughes,et al.  Gall morphology and community composition in Asphondylia flocossa (Cecidomyiidae) galls on Atriplex polycarpa (Chenopodiaceae) , 1998 .

[31]  G. Fernandes Hypersensitivity as a Phenotypic Basis of Plant Induced Resistance against a Galling Insect (Diptera: Cecidomyiidae) , 1998 .

[32]  B. Crespi,et al.  Phylogenetics of social behavior in Australian gall-forming thrips: evidence from mitochondrial DNA sequence, adult morphology and behavior, and gall morphology. , 1998, Molecular phylogenetics and evolution.

[33]  Bradford A. Hawkins,et al.  PREDATORS, PARASITOIDS, AND PATHOGENS AS MORTALITY AGENTS IN PHYTOPHAGOUS INSECT POPULATIONS , 1997 .

[34]  G. Walter,et al.  Species status of two host-associated populations of Aphytis lingnanensis (Hymenoptera: Aphelinidae) in citrus , 1997 .

[35]  R. Shukle,et al.  Genetics of Virulence in the Hessian Fly to Resistance Gene H13 in Wheat , 1997 .

[36]  C. Labandeira,et al.  A Carboniferous insect gall: insight into early ecologic history of the Holometabola. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  C. Briggs,et al.  The window of vulnerability and its effect on relative parasitoid abundance , 1996 .

[38]  W. Foster,et al.  THE EVOLUTION OF SOLDIERS IN APHIDS , 1996, Biological reviews of the Cambridge Philosophical Society.

[39]  D. Stern Phylogenetic evidence that aphids, rather than plants, determine gall morphology , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[40]  M. Crawley,et al.  Spatial and temporal variation in guild structure: parasitoids and inquilines of Andricus quercuscalicis (Hymenoptera: Cynipidae) in its native and alien ranges. , 1995 .

[41]  H. Zwolfer,et al.  Parasitoids as a driving force in the evolution of the gall size of Urophora on Cardueae hosts , 1994 .

[42]  R. Holt,et al.  Apparent Competition and Enemy-Free Space in Insect Host-Parasitoid Communities , 1993, The American Naturalist.

[43]  T. Seibert A nectar‐secreting gall wasp and ant mutualism: selection and counter‐selection shaping gall wasp phenology, fecundity and persistence , 1993 .

[44]  A. Knapp,et al.  Increased photosynthesis and water potentials in Silphium integrifolium galled by cynipid wasps , 1993, Oecologia.

[45]  D. Strong,et al.  Does gall diameter affect the parasitism rate of Asphondylia borrichiae (Diptera: Cecidomyiidae)? , 1992 .

[46]  G. Fernandes,et al.  The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats , 1992, Oecologia.

[47]  Timothy P. Craig,et al.  The window of vulnerability of a shoot-galling sawfly to attack by a parasitoid. , 1990 .

[48]  P. Price,et al.  Parasitoid pressure and the radiation of a gallforming group (Cecidomyiidae: Asphondylia spp.) on creosote bush (Larrea tridentata) , 1989, Oecologia.

[49]  P. Price,et al.  Are galling insects better protected against parasitoids than exposed feeders?: a test using tenthredinid sawflies , 1988 .

[50]  Fernandes,et al.  Adaptive Nature of Insect Galls , 1987 .

[51]  K. Clancy,et al.  Interactions Among Three Trophic Levels: Gall size and Parasitoid Attack , 1986 .

[52]  H. Cornell The Secondary Chemistry and Complex Morphology of Galls Formed by the Cynipinae (Hymenoptera): Why and How? , 1983 .

[53]  A. E. Weis Use of Symbiotic Fungus by The Gall Maker Asteromyia Carbonifera to Inhibit Attack by the Parasitoid Torymus Capite , 1982 .

[54]  A. Rokas,et al.  Lifecycle closure, lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data. , 2003, Molecular phylogenetics and evolution.

[55]  J. Pujade-Villar,et al.  The population biology of oak gall wasps (Hymenoptera: Cynipidae). , 2002, Annual review of entomology.

[56]  F. Ronquist,et al.  EVOLUTION OF THE GALL WASP–HOST PLANT ASSOCIATION , 2001 .

[57]  A. Widmer,et al.  EVOLUTION OF GALL MORPHOLOGY AND HOST-PLANT RELATIONSHIPS IN WILLOW-FEEDING SAWFLIES (HYMENOPTERA: TENTHREDINIDAE) , 2000 .

[58]  M. Mato,et al.  Methyl gallate and related polyphenols as auxin protectors , 1997 .

[59]  Neo D. Martinez,et al.  Source food webs as estimators of community web structure , 1997 .

[60]  B. Crespi,et al.  Ecology and evolution of galling thrips and their allies. , 1997, Annual review of entomology.

[61]  J. Dénarié,et al.  Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. , 1996, Annual review of biochemistry.

[62]  G. Vermeij THE EVOLUTIONARY INTERACTION AMONG SPECIES: Selection, Escalation, and Coevolution , 1994 .

[63]  M. Williams Plant galls : organisms, interactions, populations , 1994 .

[64]  W. Sheehan,et al.  Parasitoid community ecology , 1994 .

[65]  W. J. Mattson,et al.  The ecology and evolution of gall-forming insects. , 1994 .

[66]  A. A. Wiebes-Rijks Ecological relationships of insects inhabiting cynipid galls , 1992 .

[67]  J. D. Shorthouse,et al.  Biology of insect-induced galls , 1992 .

[68]  R. Dawkins The Extended Phenotype , 1982 .