THE OCCURRENCE OF GRAIN BOUNDARY SERRATION AND ITS EFFECT ON THE M23C6 CARBIDE CHARACTERISTICS IN AN AISI 316 STAINLESS STEEL

[1]  H. Irie,et al.  Microstructuural Evolution in SUS304H Steel during Long-Term Creep Over 105 h , 1999 .

[2]  Y. Yoon,et al.  Characterization of the cavity nucleation factor for life prediction under creep-fatigue interaction , 1996, Journal of Materials Science.

[3]  Y. Yoon,et al.  The normalized coffin- manson plot in terms of a new damage function based on grain boundary cavitation under creep- fatigue condition , 1996 .

[4]  D. Yoon,et al.  The dendritic growth of γ′ precipitates and grain , 1993, Metallurgical and Materials Transactions A.

[5]  S. Nam,et al.  Effect of Thermal Aging on High Temperature Low Cycle Fatigue Behavior in AISI 304 Stainless Steel , 1993 .

[6]  H. Iizuka,et al.  Creep rupture strength and grain-boundary sliding in austenitic 21 Cr-4Ni-9Mn steels with serrated grain boundaries , 1988 .

[7]  K. Rie,et al.  Creep-fatigue life prediction in terms of nucleation and growth of fatigue crack and creep cavities , 1988, Metallurgical and Materials Transactions A.

[8]  K. Rie,et al.  A model for life prediction in low-cycle fatigue with hold time , 1985 .

[9]  A. K. Koul,et al.  On the mechanism of serrated grain boundary formation in Ni-based superalloys , 1983 .

[10]  P. Maiya Effects of wave shape and ultrahigh vacuum on elevated temperature low cycle fatigue in type 304 stainless steel , 1981 .

[11]  J. M. Larson,et al.  Metallurgical factors affecting the crack growth resistance of a superalloy , 1977 .

[12]  K. Tu,et al.  Morphology of cellular precipitation of tin from lead-tin bicrystals , 1967 .

[13]  M. Yamazaki The Effect of Two-Step Solution Treatment on the Creep Rupture Properties of a High Carbon 18Cr-12Ni Stainless Steel , 1966 .

[14]  M. Lewis,et al.  Precipitation of M23C6 in austenitic steels , 1965 .