In Situ Dendrite Suppression Study of Nanolayer Encapsulated Li Metal Enabled by Zirconia Atomic Layer Deposition.

Progressing toward the emerging era of high-energy-density batteries, stable and safe employment of lithium (Li) metal anodes is highly desired. The primary concern with Li metal anodes is their uncontrollable dendrites growth and extreme sensitivity to parasitic degradation reactions, raising the alarms for battery safety and shelf life. Nanolayer protection encapsulation, which is conformal and ionically conductive with a high-κ dielectric property, can suppress the degradation and empower stabilization of Li metal. In this work, engineering of a zirconia (ZrO2) encapsulation layer on Li metal enabled by atomic layer deposition (ALD) was employed and investigated for surface-enhanced dendrite suppression properties using in situ optical observations and electrochemical cycling. The ALD process involved a combination of plasma subcycle activation and thermal subcycle activation in increasing the surface functionalization and chemisorption sites for precursors to obtain highly dense and conformal deposition. The encapsulation of Li with ZrO2 ALD nanolayer further demonstrated excellent tolerance to atmospheric exposure for at least 1-5 h because of a conformal physical barrier, and excellent heat tolerance up-to 170-180 °C (close to Li melting point) and high rate capability due to thermal resistive property and high ionic transport property, respectively, of the ZrO2 ceramic. The results establish a technology transferable to other metal anode chemistries and offer a potential insight into carrying out solid-state electrolyte multilayer coatings with high processing temperature flexibility and thereby providing a leap in the advancing of a range of high energy density all-solid-state batteries.

[1]  Wu Xu,et al.  A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries , 2018 .

[2]  Yang Zhao,et al.  Molecular Layer Deposition for Energy Conversion and Storage , 2018 .

[3]  P. Cui,et al.  Interface Re-Engineering of Li10GeP2S12 Electrolyte and Lithium anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2018, ACS applied materials & interfaces.

[4]  Xin-Bing Cheng,et al.  Advances in Interfaces between Li Metal Anode and Electrolyte , 2018 .

[5]  N. Wu,et al.  High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite‐Free and High‐Performance Lithium Metal Anodes , 2018 .

[6]  Qian Sun,et al.  Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode. , 2017, Nano letters.

[7]  L. Nazar,et al.  A facile surface chemistry route to a stabilized lithium metal anode , 2017, Nature Energy.

[8]  J. Connell,et al.  Lithium metal protected by atomic layer deposition metal oxide for high performance anodes , 2017 .

[9]  Qian Sun,et al.  Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition , 2017, Advanced materials.

[10]  Yayuan Liu,et al.  An Artificial Solid Electrolyte Interphase with High Li‐Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes , 2017, Advanced materials.

[11]  Xin-Bing Cheng,et al.  Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries , 2017 .

[12]  Bin Zhu,et al.  Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High‐Performance Lithium‐Metal Battery Anodes , 2017, Advanced materials.

[13]  G. Rubloff,et al.  ALD Protection of Li‐Metal Anode Surfaces – Quantifying and Preventing Chemical and Electrochemical Corrosion in Organic Solvent , 2016 .

[14]  H. Le,et al.  Effects of an Organic Chemical Additive in Electrolyte on the Suppression of Lithium Dendrite in Lithium Metal Based Batteries , 2016 .

[15]  S. B. Aziz Role of Dielectric Constant on Ion Transport: Reformulated Arrhenius Equation , 2016 .

[16]  Kevin N. Wood,et al.  Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments , 2015 .

[17]  Liangbing Hu,et al.  Interface Engineering of Next Generation Lithium Metal Anodes Using Atomic Layer Deposition , 2015 .

[18]  Xiaogang Han,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[19]  P. Qi,et al.  In situ growth of MOFs on the surface of si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[20]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[21]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[22]  T. Yoshida,et al.  Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte , 2011 .

[23]  S. George,et al.  Molecular Layer Deposition of Alucone Polymer Films Using Trimethylaluminum and Ethylene Glycol , 2008 .

[24]  B. Nait‐Ali,et al.  Thermal conductivity of highly porous zirconia , 2006 .

[25]  K. S. Shamala,et al.  Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method , 2004 .

[26]  A. Wientjes Zirconium and zirconium compounds , 2002 .

[27]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[28]  Robert A. Miller,et al.  Thermal barrier coatings for aircraft engines: history and directions , 1997 .

[29]  P. Harrop,et al.  The dielectric constant of zirconia , 1967 .