Stability and linear independence associated with wavelet decompositions
暂无分享,去创建一个
[1] W. Leveque. Fundamentals of number theory , 1977 .
[2] Wolfgang Dahmen,et al. Translates of multivarlate splines , 1983 .
[3] Y. Meyer. Ondelettes et fonctions splines , 1987 .
[4] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[5] A. Ron. A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution , 1989 .
[6] Gilbert Strang,et al. Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..
[7] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[8] A. Cohen. Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .
[9] Albert Cohen. Ondelettes, analyses multi résolutions et traitement numérique du signal , 1990 .
[10] Wolfgang Dahmen,et al. On Stationary Subdivision And the Construction of Compactly Supported Orthonormal Wavelets , 1990 .
[11] C. Micchelli,et al. Stationary Subdivision , 1991 .
[12] Charles A. Micchelli,et al. Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.
[13] C. Micchelli,et al. On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.
[14] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[15] C. Chui,et al. A general framework of compactly supported splines and wavelets , 1992 .