Stability and linear independence associated with wavelet decompositions

Wavelet decompositions are based on basis functions satisfying refinement equations. The stability, linear independence, and orthogonality of the integer translates of basis functions play an essential role in the study of wavelets. In this paper we characterize these properties in terms of the mask sequence in the refinement equation that the basis function satisfies

[1]  W. Leveque Fundamentals of number theory , 1977 .

[2]  Wolfgang Dahmen,et al.  Translates of multivarlate splines , 1983 .

[3]  Y. Meyer Ondelettes et fonctions splines , 1987 .

[4]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[5]  A. Ron A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution , 1989 .

[6]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[7]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[8]  A. Cohen Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .

[9]  Albert Cohen Ondelettes, analyses multi résolutions et traitement numérique du signal , 1990 .

[10]  Wolfgang Dahmen,et al.  On Stationary Subdivision And the Construction of Compactly Supported Orthonormal Wavelets , 1990 .

[11]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[12]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[13]  C. Micchelli,et al.  On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.

[14]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[15]  C. Chui,et al.  A general framework of compactly supported splines and wavelets , 1992 .