Associative-algebraic approach to logarithmic conformal field theories

[1]  N. Read,et al.  Enlarged symmetry algebras of spin chains, loop models, and S-matrices , 2007, cond-mat/0701259.

[2]  P. Pearce,et al.  Solvable critical dense polymers , 2006, hep-th/0610273.

[3]  B. Feigin,et al.  Kazhdan-Lusztig-dual quantum group for logarithimic extensions of Virasoro minimal models , 2006, math/0606506.

[4]  T. Quella,et al.  The WZNW model on PSU (1,1|2) , 2006, hep-th/0610070.

[5]  J. Zuber,et al.  Logarithmic minimal models , 2006, hep-th/0607232.

[6]  J. Cardy The O(n) Model on the Annulus , 2006, math-ph/0604043.

[7]  H. Saleur,et al.  The GL(1|1) WZW-model: From supergeometry to logarithmic CFT , 2005, hep-th/0510032.

[8]  A. Nichols The Temperley–Lieb algebra and its generalizations in the Potts and XXZ models , 2005, hep-th/0509069.

[9]  B. Feigin,et al.  Modular Group Representations and Fusion in Logarithmic Conformal Field Theories and in the Quantum Group Center , 2005, hep-th/0504093.

[10]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[11]  P. Pearce,et al.  Critical RSOS and minimal models: fermionic paths, Virasoro algebra and fields , 2002, hep-th/0211186.

[12]  J. Fuchs,et al.  Logarithmic conformal field theories via logarithmic deformations , 2002, hep-th/0201091.

[13]  J. Cardy The Stress Tensor In Quenched Random Systems , 2001, cond-mat/0111031.

[14]  M. Gaberdiel An algebraic approach to logarithmic conformal field theory , 2001, hep-th/0111260.

[15]  M. Flohr Bits and Pieces in Logarithmic Conformal Field Theory , 2001, hep-th/0111228.

[16]  N. Read,et al.  Exact spectra of conformal supersymmetric nonlinear sigma models in two dimensions , 2001, hep-th/0106124.

[17]  I. Kogan,et al.  Disordered Dirac fermions: the marriage of three different approaches , 2000, cond-mat/0012240.

[18]  H. Kausch,et al.  Symplectic Fermions , 2000, hep-th/0003029.

[19]  A. Ludwig,et al.  gl(N|N) Super-current algebras for disordered Dirac fermions in two dimensions , 1999, cond-mat/9909143.

[20]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[21]  V. Gurarie,et al.  C-THEOREM FOR DISORDERED SYSTEMS , 1998, cond-mat/9808063.

[22]  M. Gaberdiel,et al.  A local logarithmic conformal field theory , 1998, hep-th/9807091.

[23]  A. Stone,et al.  Mesoscopic conductance and its fluctuations at a nonzero Hall angle , 1997, cond-mat/9701077.

[24]  Falk Rohsiepe On Reducible but Indecomposable Representations of the Virasoro Algebra , 1996, hep-th/9611160.

[25]  M. Gaberdiel,et al.  A rational logarithmic conformal field theory , 1996, hep-th/9606050.

[26]  M. Flohr On Fusion Rules in Logarithmic Conformal Field Theories , 1996, hep-th/9605151.

[27]  M. Gaberdiel,et al.  INDECOMPOSABLE FUSION PRODUCTS , 1996, hep-th/9604026.

[28]  M. Flohr On modular invariant partition functions of conformal field theories with logarithmic operators , 1995, hep-th/9509166.

[29]  H. Kausch,et al.  Curiosities at c=-2 , 1995, hep-th/9510149.

[30]  G. J. Wozniak,et al.  Time-scale and branching ratios in sequential multifragmentation , 1995 .

[31]  H. Saleur,et al.  Representations of the Virasoro algebra from lattice models , 1994 .

[32]  M. Gaberdiel FUSION IN CONFORMAL FIELD THEORY AS THE TENSOR PRODUCT OF THE SYMMETRY ALGEBRA , 1993, hep-th/9307183.

[33]  P. Martin,et al.  The blob algebra and the periodic Temperley-Lieb algebra , 1993, hep-th/9302094.

[34]  P. Pearce,et al.  Multi-colour braid-monoid algebras , 1993, hep-th/9303161.

[35]  V. Gurarie Logarithmic operators in conformal field theory , 1993, hep-th/9303160.

[36]  H. Saleur,et al.  Quantum field theory for the multi-variable Alexander-Conway polynomial , 1992 .

[37]  P. Martin,et al.  ON SCHUR-WEYL DUALITY, An HECKE ALGEBRAS AND QUANTUM sl(N) ON $\otimes^{n+1}{\mathbb C}^N$ , 1992 .

[38]  P. Martin,et al.  ON COMMUTANTS, DUAL PAIRS AND NON-SEMISIMPLE ALGEBRAS FROM STATISTICAL MECHANICS , 1992 .

[39]  Paul Martin,et al.  POTTS MODELS AND RELATED PROBLEMS IN STATISTICAL MECHANICS , 1991 .

[40]  V. Pasquier,et al.  Common structures between finite systems and conformal field theories through quantum groups , 1990 .

[41]  Nathan Seiberg,et al.  LECTURES ON RCFT , 1989 .

[42]  M. Bauer,et al.  On some relations between local height probabilities and conformal invariance , 1989 .

[43]  G. Moore,et al.  Classical and quantum conformal field theory , 1989 .

[44]  田中 正,et al.  SUPERSTRING THEORY , 1989, The Lancet.

[45]  V. G. Knizhnik Analytic fields on Riemann surfaces. II , 1987 .

[46]  J. Zuber,et al.  Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models , 1987 .

[47]  Michael B. Green,et al.  Superstring Theory: Volume 2, Loop Amplitudes, Anomalies and Phenomenology , 1987 .

[48]  J. Zuber,et al.  Modular invariance in non-minimal two-dimensional conformal theories , 1987 .

[49]  Michael B. Green,et al.  Loop amplitudes, anomalies and phenomenology , 1987 .

[50]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[51]  Bernard Nienhuis,et al.  Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas , 1984 .

[52]  V. Jones Index for subfactors , 1983 .

[53]  Bernard Nienhuis,et al.  Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .

[54]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[55]  Frank W. Anderson,et al.  Rings and Categories of Modules , 1974 .