Graph exploration by a finite automaton

A finite automaton, simply referred to as a robot, has to explore a graph whose nodes are unlabeled and whose edge ports are locally labeled at each node. The robot has no a priori knowledge of the topology of the graph or of its size. Its task is to traverse all the edges of the graph. We first show that, for any K-state robot and any d ≥ 3, there exists a planar graph of maximum degree d with at most K + 1 nodes that the robot cannot explore. This bound improves all previous bounds in the literature. More interestingly, we show that, in order to explore all graphs of diameter D and maximum degree d, a robot needs Ω(D log d) memory bits, even if we restrict the exploration to planar graphs. This latter bound is tight. Indeed, a simple DFS up to depth D + 1 enables a robot to explore any graph of diameter D and maximum degree d using a memory of size O(D log d) bits. We thus prove that the worst case space complexity of graph exploration is Θ(D log d) bits.

[1]  Noam Nisan,et al.  Pseudorandomness for network algorithms , 1994, STOC '94.

[2]  Hans-Anton Rollik,et al.  Automaten in planaren Graphen , 1979, Acta Informatica.

[3]  Susanne Albers,et al.  Exploring Unknown Environments , 2000, SIAM J. Comput..

[4]  Lothar Budach,et al.  On Universal Traps , 1979, J. Inf. Process. Cybern..

[5]  Armin Hemmerling Labyrinth problems : labyrinth-searching abilities of automata , 1989 .

[6]  Alejandro López-Ortiz,et al.  On-line parallel heuristics, processor scheduling and robot searching under the competitive framework , 2004, Theor. Comput. Sci..

[7]  Lothar Budach,et al.  On the Solution of the Labyrinth Problem for Finite Automata , 1975, J. Inf. Process. Cybern..

[8]  Michael A. Bender,et al.  The power of a pebble: exploring and mapping directed graphs , 1998, STOC '98.

[9]  Mona Singh,et al.  Piecemeal Learning of an Unknown Environment , 1993, COLT.

[10]  Andrzej Pelc,et al.  Exploring unknown undirected graphs , 1999, SODA '98.

[11]  Baruch Schieber,et al.  Navigating in Unfamiliar Geometric Terrain , 1997, SIAM J. Comput..

[12]  Michael A. Bender,et al.  The power of team exploration: two robots can learn unlabeled directed graphs , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[13]  Amos Fiat,et al.  Online Navigation in a Room , 1992, J. Algorithms.

[14]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computation , 1992, Comb..

[15]  Michael Jenkin,et al.  Robotic exploration as graph construction , 1991, IEEE Trans. Robotics Autom..

[16]  Pierre Fraigniaud,et al.  Digraphs Exploration with Little Memory , 2004, STACS.

[17]  Michael F. Bridgland Universal Traversal Sequences for Paths and Cycles , 1987, J. Algorithms.

[18]  Horst Müller Automata Catching Labyrinths with at most Three Components , 1979, J. Inf. Process. Cybern..

[19]  Howard J. Karloff,et al.  Universal Traversal Sequences of Length n^O(log n) for Cliques , 1988, Inf. Process. Lett..

[20]  L. Budach Automata and Labyrinths , 1978 .

[21]  Noam Nisan,et al.  Multiparty protocols and logspace-hard pseudorandom sequences , 1989, STOC '89.

[22]  Mona Singh,et al.  Piecemeal graph exploration by a mobile robot (extended abstract) , 1995, COLT '95.

[23]  Lothar Budach,et al.  Environments, Labyrinths and Automata , 1977, FCT.

[24]  Wolfgang Coy Automata in Labyrinths , 1977, FCT.

[25]  Xiaotie Deng,et al.  How to learn an unknown environment. I: the rectilinear case , 1998, JACM.

[26]  Andrzej Pelc,et al.  Collective tree exploration , 2004, Networks.

[27]  Andrzej Pelc,et al.  Collective Tree Exploration , 2004, LATIN.

[28]  Allan Borodin,et al.  Bounds on Universal Sequences , 1989, SIAM J. Comput..

[29]  C. Papadimitriou,et al.  Exploring an unknown graph , 1999 .

[30]  Michael A. Bender,et al.  The power of a pebble: exploring and mapping directed graphs , 1998, STOC '98.

[31]  Andrzej Pelc,et al.  Graph exploration by a finite automaton , 2005, Theor. Comput. Sci..

[32]  Noga Alon,et al.  Universal sequences for complete graphs , 1990, Discret. Appl. Math..

[33]  Avi Wigderson,et al.  Universal Traversal Sequences for Expander Graphs , 1993, Inf. Process. Lett..

[34]  V. S. Anil Kumar,et al.  Optimal constrained graph exploration , 2001, SODA '01.

[35]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[36]  Manuel Blum,et al.  On the power of the compass (or, why mazes are easier to search than graphs) , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[37]  Krzysztof Diks,et al.  Tree exploration with little memory , 2002, SODA.

[38]  Dexter Kozen,et al.  Automata and planar graphs , 1979, International Symposium on Fundamentals of Computation Theory.

[39]  Alejandro López-Ortiz,et al.  Online Parallel Heuristics and Robot Searching under the Competitive Framework , 2002, SWAT.

[40]  Mona Singh,et al.  Piecemeal Graph Exploration by a Mobile Robot , 1999, Inf. Comput..

[41]  Sorin Istrail,et al.  Polynomial universal traversing sequences for cycles are constructible , 1988, STOC '88.

[42]  Frank Hoffmann One Pebble Does Not Suffice to Search Plane Labyrinths , 1981, FCT.

[43]  Michal Koucký,et al.  Log-space constructible universal traversal sequences for cycles of length O(n4.03) , 2001, Theor. Comput. Sci..

[44]  Horst Müller,et al.  Endliche Automaten und Labyrinthe , 1971, J. Inf. Process. Cybern..

[45]  Martin Tompa,et al.  Lower Bounds on Universal Traversal Sequences Based on Chains of Length Five , 1995, Inf. Comput..

[46]  Günter Asser Bemerkungen zum Labyrinth-Problem , 1977, J. Inf. Process. Cybern..