Review of Planetary and Satellite Theories

Planetary and satellite theories have been historically and are presently intimately related to the available computing capabilities, the accuracy of observational data, and the requirements of the astronomical community. Thus, the development of computers made it possible to replace planetary and lunar general theories with numerical integrations, or special perturbation methods. In turn, the availability of inexpensive small computers and high-speed computers with inexpensive memory stimulated the requirement to change from numerical integration back to general theories, or representative ephemerides, where the ephemerides could be calculated for a given date rather than using a table look-up process. In parallel with this progression, the observational accuracy has improved such that general theories cannot presently achieve the accuracy of the observations, and, in turn, it appears that in some cases the models and methods of numerical integration also need to be improved for the accuracies of the observations.

[1]  D. Jezewski,et al.  An analytic solution to the classical two-body problem with drag , 1982 .

[2]  D. Richardson A third-order intermediate orbit for planetary theory , 1982 .

[3]  R. H. Lyddane Small eccentricities or inclinations in the Brouwer theory of the artificial satellite , 1963 .

[4]  J. Beletic,et al.  Orbital elements of Charon from speckle interferometry , 1989 .

[5]  J. Vinti New method of solution for unretarded satellite orbits , 1959 .

[6]  T. C. Flandern,et al.  First order planetary perturbations with elliptic functions , 1987 .

[7]  J. Laskar Secular terms of classical planetary theories using the results of general theory , 1986 .

[8]  M. Chapront-Touze,et al.  ESAPHO: a semi-analytical theory for the orbital motion of Phobos , 1988 .

[9]  E. Standish The JPL planetary ephemerides , 1982 .

[10]  J. Henrard,et al.  Analytical Lunar Ephemeris: The Variational Orbit , 1971 .

[11]  J. Laskar A numerical experiment on the chaotic behaviour of the Solar System , 1989, Nature.

[12]  S. Synnott Orbits of the small inner satellites of Jupiter , 1984 .

[13]  Where are the Saturnian Trojans , 1988 .

[14]  Artificial Systems,et al.  Long-term dynamical behaviour of natural and artificial n-body systems , 1988 .

[15]  C. F. Peters,et al.  Orbits of the small satellites of saturn. , 1981, Science.

[16]  Regularization and the artificial Earth satellite problem , 1974 .

[17]  J. Laskar,et al.  GUST86 - An analytical ephemeris of the Uranian satellites. [General Uranus Satellite Theory , 1987 .

[18]  J. Lieske Improved ephemerides of the Galilean satellites , 1980 .

[19]  L. Bykova,et al.  Developing high accuracy numerical theories of motion of outer satellites of Jupiter and Saturn , 1985 .

[20]  H. Reitsema The libration of the Saturnian satellite Dione B , 1981 .

[21]  A. Sinclair The orbits of the satellites of Mars determined from earth-based and spacecraft observations , 1989 .

[22]  G. Wilkins Motion of Phobos , 1969, Nature.

[23]  M. Carpino,et al.  Dynamics of Pluto , 1989 .

[24]  P. Bretagnon Theorie du mouvement de l'ensemble des planetes (VSOP82). , 1982 .

[25]  J. Laskar Théorie Générale Planétaire. Eléments orbitaux des planètes sur 1 million d'années , 1984 .

[26]  An analytic method to account for drag in the Vinti satellite theory , 1975 .

[27]  R. Broucke,et al.  Some models for the motion of the co-orbital satellites of Saturn. , 1988 .

[28]  André Deprit,et al.  The elimination of the parallax in satellite theory , 1981 .

[29]  Theory of Motion of Jupiter’s Galilean Satellites , 1977 .

[30]  E. Wnuk Tesseral harmonic perturbations for high order and degree harmonics , 1988 .

[31]  S. Synnott,et al.  Orbits of the six new satellites of Neptune , 1991 .

[32]  Felix R. Hoots,et al.  Reformulation of the Brouwer geopotential theory for improved computational efficiency , 1981 .

[33]  E. W. Brown,et al.  Tables of the motion of the moon , 1919 .

[34]  J. Chapront,et al.  The lunar ephemeris ELP 2000. , 1983 .

[35]  P. Herget Outer satellites of Jupiter. , 1968 .

[36]  J. Henrard A new solution to the Main Problem of Lunar Theory , 1979 .

[37]  A. Deprit,et al.  Fast evaluation of Fourier series , 1978 .

[38]  Yoshihide Kozai,et al.  The motion of a close earth satellite , 1959 .

[39]  J. Simon,et al.  Théorie du mouvement de Jupiter et Saturne sur un intervalle de temps de 6000 ans. Solution JASON 84 , 1984 .

[40]  B. Garfinkel The orbit of a satellite of an oblate planet , 1959 .

[41]  S. Segan Analytical computation of atmospheric drag effects , 1987 .

[42]  Yoshibide Kozai,et al.  Second-order solution of artificial satellite theory without air drag , 1962 .

[43]  C. F. Yoder,et al.  New observations of Saturn's coorbital satellites , 1992 .

[44]  J. Vinti,et al.  Theory of an accurate intermediary orbit for satellite astronomy , 1961 .

[45]  C. Murray,et al.  The dynamics of tadpole and horseshoe orbits I. Theory , 1981 .

[46]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[47]  B. R. Miller A program generator for efficient evaluation of fourier series , 1989, ISSAC '89.

[48]  J. Henrard,et al.  Analytical Lunar Ephemeris: Delaunay's Theory , 1971 .

[49]  E. M. Standish,et al.  DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. , 1983 .

[50]  Jacques Laskar,et al.  The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .

[51]  Dirk Brouwer,et al.  SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .

[52]  G. S. Gedeon,et al.  Tesseral resonance effects on satellite orbits , 1969 .

[53]  J. Chapront,et al.  ELP 2000-85: a semi-analytical lunar ephemeris adequate for historical times , 1988 .

[54]  M. Chapront-Touzé Orbits of the Martian satellites from ESAPHO and ESADE theories , 1990 .

[55]  Bradford A. Smith,et al.  Orbits of Saturn's F ring and its shepherding satellites , 1983 .

[56]  L. Carpenter,et al.  Computation of general planetary perturbations for resonance cases , 1966 .

[57]  S. Synnott,et al.  Theory of motion of Saturn's coorbiting satellites , 1983 .

[58]  Felix R. Hoots,et al.  An analytic satellite theory using gravity and a dynamic atmosphere , 1987 .

[59]  C. Murray,et al.  The dynamics of tadpole and horseshoe orbits: II. The coorbital satellites of saturn , 1981 .

[60]  S. Synnott,et al.  Orbits of the ten small satellites of Uranus , 1987 .

[61]  J. Henrard,et al.  ANALYTICAL LUNAR EPHEMERIS. 1. DEFINITION OF THE MAIN PROBLEM , 1970 .

[62]  P. Seidelmann,et al.  The dynamics of the Saturnian satellites 1980S1 and 1980S3 , 1981 .