Review of Planetary and Satellite Theories
暂无分享,去创建一个
[1] D. Jezewski,et al. An analytic solution to the classical two-body problem with drag , 1982 .
[2] D. Richardson. A third-order intermediate orbit for planetary theory , 1982 .
[3] R. H. Lyddane. Small eccentricities or inclinations in the Brouwer theory of the artificial satellite , 1963 .
[4] J. Beletic,et al. Orbital elements of Charon from speckle interferometry , 1989 .
[5] J. Vinti. New method of solution for unretarded satellite orbits , 1959 .
[6] T. C. Flandern,et al. First order planetary perturbations with elliptic functions , 1987 .
[7] J. Laskar. Secular terms of classical planetary theories using the results of general theory , 1986 .
[8] M. Chapront-Touze,et al. ESAPHO: a semi-analytical theory for the orbital motion of Phobos , 1988 .
[9] E. Standish. The JPL planetary ephemerides , 1982 .
[10] J. Henrard,et al. Analytical Lunar Ephemeris: The Variational Orbit , 1971 .
[11] J. Laskar. A numerical experiment on the chaotic behaviour of the Solar System , 1989, Nature.
[12] S. Synnott. Orbits of the small inner satellites of Jupiter , 1984 .
[13] Where are the Saturnian Trojans , 1988 .
[14] Artificial Systems,et al. Long-term dynamical behaviour of natural and artificial n-body systems , 1988 .
[15] C. F. Peters,et al. Orbits of the small satellites of saturn. , 1981, Science.
[16] Regularization and the artificial Earth satellite problem , 1974 .
[17] J. Laskar,et al. GUST86 - An analytical ephemeris of the Uranian satellites. [General Uranus Satellite Theory , 1987 .
[18] J. Lieske. Improved ephemerides of the Galilean satellites , 1980 .
[19] L. Bykova,et al. Developing high accuracy numerical theories of motion of outer satellites of Jupiter and Saturn , 1985 .
[20] H. Reitsema. The libration of the Saturnian satellite Dione B , 1981 .
[21] A. Sinclair. The orbits of the satellites of Mars determined from earth-based and spacecraft observations , 1989 .
[22] G. Wilkins. Motion of Phobos , 1969, Nature.
[23] M. Carpino,et al. Dynamics of Pluto , 1989 .
[24] P. Bretagnon. Theorie du mouvement de l'ensemble des planetes (VSOP82). , 1982 .
[25] J. Laskar. Théorie Générale Planétaire. Eléments orbitaux des planètes sur 1 million d'années , 1984 .
[26] An analytic method to account for drag in the Vinti satellite theory , 1975 .
[27] R. Broucke,et al. Some models for the motion of the co-orbital satellites of Saturn. , 1988 .
[28] André Deprit,et al. The elimination of the parallax in satellite theory , 1981 .
[29] Theory of Motion of Jupiter’s Galilean Satellites , 1977 .
[30] E. Wnuk. Tesseral harmonic perturbations for high order and degree harmonics , 1988 .
[31] S. Synnott,et al. Orbits of the six new satellites of Neptune , 1991 .
[32] Felix R. Hoots,et al. Reformulation of the Brouwer geopotential theory for improved computational efficiency , 1981 .
[33] E. W. Brown,et al. Tables of the motion of the moon , 1919 .
[34] J. Chapront,et al. The lunar ephemeris ELP 2000. , 1983 .
[35] P. Herget. Outer satellites of Jupiter. , 1968 .
[36] J. Henrard. A new solution to the Main Problem of Lunar Theory , 1979 .
[37] A. Deprit,et al. Fast evaluation of Fourier series , 1978 .
[38] Yoshihide Kozai,et al. The motion of a close earth satellite , 1959 .
[39] J. Simon,et al. Théorie du mouvement de Jupiter et Saturne sur un intervalle de temps de 6000 ans. Solution JASON 84 , 1984 .
[40] B. Garfinkel. The orbit of a satellite of an oblate planet , 1959 .
[41] S. Segan. Analytical computation of atmospheric drag effects , 1987 .
[42] Yoshibide Kozai,et al. Second-order solution of artificial satellite theory without air drag , 1962 .
[43] C. F. Yoder,et al. New observations of Saturn's coorbital satellites , 1992 .
[44] J. Vinti,et al. Theory of an accurate intermediary orbit for satellite astronomy , 1961 .
[45] C. Murray,et al. The dynamics of tadpole and horseshoe orbits I. Theory , 1981 .
[46] J. Wisdom,et al. Symplectic maps for the N-body problem. , 1991 .
[47] B. R. Miller. A program generator for efficient evaluation of fourier series , 1989, ISSAC '89.
[48] J. Henrard,et al. Analytical Lunar Ephemeris: Delaunay's Theory , 1971 .
[49] E. M. Standish,et al. DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. , 1983 .
[50] Jacques Laskar,et al. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .
[51] Dirk Brouwer,et al. SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .
[52] G. S. Gedeon,et al. Tesseral resonance effects on satellite orbits , 1969 .
[53] J. Chapront,et al. ELP 2000-85: a semi-analytical lunar ephemeris adequate for historical times , 1988 .
[54] M. Chapront-Touzé. Orbits of the Martian satellites from ESAPHO and ESADE theories , 1990 .
[55] Bradford A. Smith,et al. Orbits of Saturn's F ring and its shepherding satellites , 1983 .
[56] L. Carpenter,et al. Computation of general planetary perturbations for resonance cases , 1966 .
[57] S. Synnott,et al. Theory of motion of Saturn's coorbiting satellites , 1983 .
[58] Felix R. Hoots,et al. An analytic satellite theory using gravity and a dynamic atmosphere , 1987 .
[59] C. Murray,et al. The dynamics of tadpole and horseshoe orbits: II. The coorbital satellites of saturn , 1981 .
[60] S. Synnott,et al. Orbits of the ten small satellites of Uranus , 1987 .
[61] J. Henrard,et al. ANALYTICAL LUNAR EPHEMERIS. 1. DEFINITION OF THE MAIN PROBLEM , 1970 .
[62] P. Seidelmann,et al. The dynamics of the Saturnian satellites 1980S1 and 1980S3 , 1981 .