A Generalization of SAT and #SAT for Robust Policy Evaluation

Both SAT and #SAT can represent difficult problems in seemingly dissimilar areas such as planning, verification, and probabilistic inference. Here, we examine an expressive new language, #∃SAT, that generalizes both of these languages. #∃SAT problems require counting the number of satisfiable formulas in a concisely-describable set of existentially-quantified, propositional formulas. We characterize the expressiveness and worst-case difficulty of #∃SAT by proving it is complete for the complexity class #PNP[1], and relating this class to more familiar complexity classes. We also experiment with three new general-purpose #∃SAT solvers on a battery of problem distributions including a simple logistics domain. Our experiments show that, despite the formidable worst-case complexity of #PNP[1], many of the instances can be solved efficiently by noticing and exploiting a particular type of frequent structure.

[1]  Fahiem Bacchus,et al.  Binary Clause Reasoning in QBF , 2006, SAT.

[2]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[3]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[4]  Scott Sanner,et al.  Symbolic Dynamic Programming for First-order POMDPs , 2010, AAAI.

[5]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[6]  Jörg Hoffmann,et al.  From Sampling to Model Counting , 2007, IJCAI.

[7]  Adnan Darwiche,et al.  Decomposable negation normal form , 2001, JACM.

[8]  Thomas Schiex,et al.  A constraint satisfaction framework for decision under uncertainty , 1995, UAI.

[9]  Osamu Watanabe,et al.  Is the Valiant-Vazirani Isolation Lemma Improvable? , 2011, Electron. Colloquium Comput. Complex..

[10]  Osamu Watanabe,et al.  Is Valiant-Vazirani's Isolation Probability Improvable? , 2012, Computational Complexity Conference.

[11]  Toniann Pitassi,et al.  Combining Component Caching and Clause Learning for Effective Model Counting , 2004, SAT.

[12]  Toniann Pitassi,et al.  Stochastic Boolean Satisfiability , 2001, Journal of Automated Reasoning.

[13]  Byron Boots,et al.  DC-SSAT: A Divide-and-Conquer Approach to Solving Stochastic Satisfiability Problems Efficiently , 2005, AAAI.

[14]  Bart Selman,et al.  A New Approach to Model Counting , 2005, SAT.

[15]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[16]  Cesare Tinelli,et al.  Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.

[17]  Mikolás Janota,et al.  Solving QBF with Counterexample Guided Refinement , 2012, SAT.

[18]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[19]  Armin Biere,et al.  Effective Preprocessing in SAT Through Variable and Clause Elimination , 2005, SAT.

[20]  Michael L. Littman,et al.  MAXPLAN: A New Approach to Probabilistic Planning , 1998, AIPS.

[21]  Toby Walsh,et al.  Backbones and Backdoors in Satisfiability , 2005, AAAI.

[22]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[23]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[24]  Henry A. Kautz,et al.  Heuristics for Fast Exact Model Counting , 2005, SAT.

[25]  Michael L. Littman,et al.  Contingent planning under uncertainty via stochastic satisfiability , 1999, Artif. Intell..

[26]  Armin Biere,et al.  Bounded model checking , 2003, Adv. Comput..

[27]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[28]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[29]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[30]  Joao Marques-Silva,et al.  GRASP: A Search Algorithm for Propositional Satisfiability , 1999, IEEE Trans. Computers.

[31]  André Platzer,et al.  An Instantiation-Based Theorem Prover for First-Order Programming , 2011, AISTATS.