Curing the Plasmid pMC1 from the Poly (γ-glutamic Acid) Producing Bacillus amyloliquefaciens LL3 Strain Using Plasmid Incompatibility

[1]  Chao Yang,et al.  Complete Genome Sequence of Bacillus amyloliquefaciens LL3, Which Exhibits Glutamic Acid-Independent Production of Poly-γ-Glutamic Acid , 2011, Journal of bacteriology.

[2]  Shufang Wang,et al.  Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. , 2011, Bioresource technology.

[3]  J. Dworkin,et al.  Bacillus subtilis Homologs of MviN (MurJ), the Putative Escherichia coli Lipid II Flippase, Are Not Essential for Growth , 2009, Journal of bacteriology.

[4]  Hiroshi Mizoguchi,et al.  Superpositioning of Deletions Promotes Growth of Escherichia coli with a Reduced Genome , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[5]  S. Kanaya,et al.  Enhanced Recombinant Protein Productivity by Genome Reduction in Bacillus subtilis , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[6]  Oscar P Kuipers,et al.  Temporal separation of distinct differentiation pathways by a dual specificity Rap‐Phr system in Bacillus subtilis , 2007, Molecular microbiology.

[7]  Hiroshi Mizoguchi,et al.  Escherichia coli minimum genome factory , 2007, Biotechnology and applied biochemistry.

[8]  L. Amaral,et al.  The mechanism of plasmid curing in bacteria. , 2006, Current drug targets.

[9]  J. Kiss,et al.  A novel transposon-based method for elimination of large bacterial plasmids. , 2006, Plasmid.

[10]  N. Valentine,et al.  Differentiation of Spores of Bacillus subtilis Grown in Different Media by Elemental Characterization Using Time-of-Flight Secondary Ion Mass Spectrometry , 2005, Applied and Environmental Microbiology.

[11]  M. A. Pickett,et al.  The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents. , 2005, Microbiology.

[12]  A. Mahadevan,et al.  Plasmid mediated metal and antibiotic resistance in marinePseudomonas , 2005, Biometals.

[13]  T. Omori,et al.  Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity , 2004, Applied Microbiology and Biotechnology.

[14]  H. Misono,et al.  Biochemistry and molecular genetics of poly-γ-glutamate synthesis , 2002, Applied Microbiology and Biotechnology.

[15]  M. Uraji,et al.  A novel plasmid curing method using incompatibility of plant pathogenic Ti plasmids in Agrobacterium tumefaciens. , 2002, Genes & genetic systems.

[16]  Marta Perego,et al.  A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis , 2001, Molecular microbiology.

[17]  I. Shih,et al.  The production of poly-(γ-glutamic acid) from microorganisms and its various applications , 2001 .

[18]  D. Platt,et al.  Isolation and curing of the Klebsiella pneumoniae large indigenous plasmid using sodium dodecyl sulphate. , 2000, Research in microbiology.

[19]  T. Ramamurthy,et al.  Plasmid curing from an acidophilic bacterium of the genus Acidocella. , 2000, FEMS microbiology letters.

[20]  Min Jiang,et al.  Differential Processing of Propeptide Inhibitors of Rap Phosphatases in Bacillus subtilis , 2000, Journal of bacteriology.

[21]  J. Casadesús,et al.  The virulence plasmids of Salmonella. , 1999, International microbiology : the official journal of the Spanish Society for Microbiology.

[22]  Tania A Baker,et al.  Polymerases and the Replisome: Machines within Machines , 1998, Cell.

[23]  R. S. Kulkarni,et al.  Effects of some curing agents on phenotypic stability in Pseudomonas putida degrading ε-caprolactam , 1997 .

[24]  S. Bron,et al.  Characterization of the replication region of the Bacillus subtilis plasmid pLS20: a novel type of replicon. , 1995, Nucleic acids research.

[25]  Philippe Glaser,et al.  Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis , 1994, Cell.

[26]  T. Tanaka,et al.  Production of Poly(γ-glutamic acid) by Bacillus subtilis F-2-01. , 1993, Bioscience, biotechnology, and biochemistry.

[27]  P. Youngman,et al.  Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. , 1992, Biochimie.

[28]  A. Sonenshein,et al.  Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system , 1992, Journal of bacteriology.

[29]  R. Leer,et al.  Incompatibility of Lactobacillus Vectors with Replicons Derived from Small Cryptic Lactobacillus Plasmids and Segregational Instability of the Introduced Vectors , 1991, Applied and environmental microbiology.

[30]  F. Hoppensteadt,et al.  Plasmid incompatibility. , 1978, Microbiological reviews.

[31]  T. Hara,et al.  Elimination of plasmid-linked polyglutamate production by Bacillus subtilis (natto) with acridine orange , 1982, Applied and environmental microbiology.

[32]  M. Swartz,et al.  Elimination of Plasmids from Several Bacterial Species by Novobiocin , 1977, Antimicrobial Agents and Chemotherapy.

[33]  D. Bouanchaud,et al.  Elimination by ethidium bromide of antibiotic resistance in enterobacteria and staphylococci. , 1968, Journal of general microbiology.