Reduced-order estimation Part 1. Filtering

ABSTRACT This paper presents a method for designing an ‘optimum’ unbiased reduced-order filter. For the proposed approach to work, the order of the filter must be greater than a certain minimum determined by the number of independent observations of the system available. The filler is much like a Luenberger observer for the state to be estimated, but with parameters optimized with respect to the noises in the system. A reduced-order innovation process is proposed that has properties similar to those of the full-order innovation process when the reduced filter is optimized. The approach offers the possibility of significant reduction in real-time computational requirements compared with the full-order filter, though at the cost of some loss of performance. The algorithm for the reduced-order filter is simple to implement— quite similar to that of the Kalman filter. An example is presented to compare the performance of the proposed method with the full-order Kalman filter.