TEM characterization of the passivating layer formed during the reduction of graphite electrodes in selected electrolytes

[1]  D. Billaud,et al.  Electrochemical intercalation of lithium into graphite: influence of the solvent composition and of the nature of the lithium salt , 1998 .

[2]  K. Edström,et al.  In situ X-ray diffraction studies of a graphite-based Li-ion battery negative electrode , 1996 .

[3]  D. Billaud,et al.  Electroreduction of graphite in LiClO4-ethylene carbonate electrolyte. Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy , 1996 .

[4]  J. J. Murray,et al.  Use of Chloroethylene Carbonate as an Electrolyte Solvent for a Graphite Anode in a Lithium‐Ion Battery , 1996 .

[5]  J. J. Murray,et al.  Use of Chloroethylene Carbonate as an Electrolyte Solvent for a Lithium Ion Battery Containing a Graphitic Anode , 1995 .

[6]  J. Dahn,et al.  The effect of turbostratic disorder on the staging transitions in lithium intercalated graphite , 1995 .

[7]  Yo Kobayashi,et al.  An X-ray photoelectron spectroscopy study on the surface film on carbon black anode in lithium secondary cells , 1995 .

[8]  Hiroshi Tamura,et al.  XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF4 , 1995 .

[9]  D. Billaud,et al.  Electrochemical synthesis of binary graphite-lithium intercalation compounds , 1993 .

[10]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .

[11]  J. Yamaki,et al.  The cathodic decomposition of propylene carbonate in lithium batteries , 1987 .

[12]  A. Dey,et al.  The Electrochemical Decomposition of Propylene Carbonate on Graphite , 1970 .