Polarization Scatterer Feature Metric Space

This paper extends prior work by Cameron and Rais to define new multidimensional representations of the reciprocal scatterer space and the general polarization scatterer space, including distance metric definitions for these representations. The relationship between the maximum symmetric scatterer type and the maximum value that can be attained by the asymmetry parameter is derived to determine the shape of the polarization reciprocal scatterer space. Moreover, a metric is derived for this space that reduces to the symmetric scatterer space metric when the asymmetry parameter is zero. These results are extended to the general polarization scatterer space by defining a metric on the polarization scatterer space that reduces to the polarization reciprocal scatterer metric when the reciprocity parameter θrec is zero.

[1]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Leo P. Ligthart,et al.  Algorithms for estimating the complete group of polarization invariants of the scattering matrix (SM) based on measuring all SM elements , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Jian Yang,et al.  Three-Component Model-Based Decomposition for Polarimetric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Thomas L. Ainsworth,et al.  Eigenvector analysis of polarimetric SAR data , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[5]  Houra Rais,et al.  Probability distributions of polarimetric target and clutter data for search and rescue , 1999, Defense, Security, and Sensing.

[6]  W. L. Cameron,et al.  Feature motivated polarization scattering matrix decomposition , 1990, IEEE International Conference on Radar.

[7]  R. Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[8]  W. Holm,et al.  On radar polarization mixed target state decomposition techniques , 1988, Proceedings of the 1988 IEEE National Radar Conference.

[9]  Houra Rais,et al.  Polarization Symmetric Scatterer Metric Space , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Ya-Qiu Jin,et al.  Deorientation theory of polarimetric scattering targets and application to terrain surface classification , 2005, IEEE Trans. Geosci. Remote. Sens..

[11]  Roger Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[12]  Thomas L. Ainsworth,et al.  The Effect of Orientation Angle Compensation on Coherency Matrix and Polarimetric Target Decompositions , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[13]  J. Huynen Phenomenological theory of radar targets , 1970 .

[14]  Houra Rais,et al.  Conservative Polarimetric Scatterers and Their Role in Incorrect Extensions of the Cameron Decomposition , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[16]  Jakob J. van Zyl,et al.  Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[18]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2011, IEEE Trans. Geosci. Remote. Sens..

[19]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[20]  Houra Rais,et al.  Derivation of a Signed Cameron Decomposition Asymmetry Parameter and Relationship of Cameron to Huynen Decomposition Parameters , 2011, IEEE Transactions on Geoscience and Remote Sensing.