An n1.618 Lower Bound on the Time to Simulate One Queue or Two Pushdown Stores by One Tape

To simulate two pushdown stores, or one queue, on-line by a one-head tape unit requires Ω(n1.618) time.

[1]  Paul M. B. Vitányi,et al.  One queue or two pushdown stores take square time on a one-head tape unit , 1984 .

[2]  Paul M. B. Vitányi,et al.  Square Time is Optimal for Simulation of One Pushdown Store or One Queue by an Oblivious One-Head Tape Unit , 1985, Inf. Process. Lett..

[3]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[4]  M. K. Valiev,et al.  Certain estimates of the time of computations on turing machines with an input , 1970 .

[5]  Wolfgang Maass,et al.  Quadratic lower bounds for deterministic and nondeterministic one-tape turing machines , 1984, STOC '84.

[6]  Wolfgang J. Paul,et al.  An Information-Theoretic Approach to Time Bounds for On-Line Computation , 1981, J. Comput. Syst. Sci..

[7]  Joel I. Seiferas,et al.  New Real-Time Simulations of Multihead Tape Units , 1981, J. ACM.

[8]  Wolfgang J. Paul,et al.  On-line simulation of k+1 tapes by k tapes requires nonlinear time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[9]  M. Rabin Real time computation , 1963 .

[10]  Ming Li,et al.  On One Tape Versus Two Stacks , 1984 .

[11]  Wolfgang J. Paul On Heads Versus Tapes , 1984, Theor. Comput. Sci..

[12]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[13]  Paul M. B. Vitányi,et al.  On the Simulation of Many Storage Heads by One , 1984, Theor. Comput. Sci..

[14]  P.M.B. Vitányi On the power of real-time turing machines under varying specifications , 1980 .