Combining symbolic and connectionist learning methods to refine certainty-factor rule-bases

iv Chapter

[1]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[2]  rey G. Towell,et al.  Re ning Symbolic Knowledge Using Neural NetworksGeo , 1991 .

[3]  Glenn Shafer,et al.  Readings in Uncertain Reasoning , 1990 .

[4]  Herbert A. Simon,et al.  Applications of machine learning and rule induction , 1995, CACM.

[5]  Julio Ortega,et al.  On the Informativeness of the DNA Promoter Sequences Domain Theory , 1994, J. Artif. Intell. Res..

[6]  Allen Ginsberg,et al.  Theory Reduction, Theory Revision, and Retranslation , 1990, AAAI.

[7]  Edward H. Shortliffe,et al.  Computer-based medical consultations, MYCIN , 1976 .

[8]  Nada Lavrac,et al.  The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains , 1986, AAAI.

[9]  Israel Rosenfield,et al.  DNA for Beginners , 1983 .

[10]  Eddie Schwalb,et al.  Compiling Bayesian Networks into Neural Networks , 1993, ICML.

[11]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[12]  Grace Jordison Molecular Biology of the Gene , 1965, The Yale Journal of Biology and Medicine.

[13]  Raymond J. Mooney,et al.  Using Theory Revision to Model Students and Acquire Stereotypical Errors , 1992 .

[14]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[15]  Richard A. Caruana,et al.  The automatic training of rule bases that use numerical uncertainty representations , 1987, Int. J. Approx. Reason..

[16]  Stephen I. Gallant,et al.  Connectionist expert systems , 1988, CACM.

[17]  R. C. Lacher,et al.  Node Error Assignment in Expert Networks † , 1992 .

[18]  Edward H. Shortliffe,et al.  A model of inexact reasoning in medicine , 1990 .

[19]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[20]  Franklin H. Portugal,et al.  A century of DNA. A history of the discovery of the structure and function of the genetic substance , 1979, Medical History.

[21]  Sowmya Ramachandran Refinement of Bayesian Networks by Combining Connectionist and Symbolic Techniques , 1995 .

[22]  Nicholas Wade Rapid Gains Are Reported On Genome: Sequencing May Be 99% Done by 2002 , 1995 .

[23]  Geoffrey E. Hinton,et al.  Learning distributed representations of concepts. , 1989 .

[24]  Marco Valtorta,et al.  Revision of Reduced Theories , 1991, ML.

[25]  Jr. Charles Ronald Musick Belief network induction , 1994 .

[26]  Dennis Connolly,et al.  Constructing Hidden Variables in Bayesian Networks via Conceptual Clustering , 1993, ICML.

[27]  Jude W. Shavlik,et al.  Using Symbolic Learning to Improve Knowledge-Based Neural Networks , 1992, AAAI.

[28]  Marcus Frean,et al.  The Upstart Algorithm: A Method for Constructing and Training Feedforward Neural Networks , 1990, Neural Computation.

[29]  Susan I. Hruska,et al.  Back-propagation learning in expert networks , 1992, IEEE Trans. Neural Networks.

[30]  Edward A. Feigenbaum,et al.  The rise of the expert company , 1988 .

[31]  William R. Swartout,et al.  Explaining and Justifying Expert Consulting Programs , 1981, IJCAI.

[32]  Y.-H. Yu,et al.  Descending epsilon in back-propagation: a technique for better generalization , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[33]  Roy Rada,et al.  Gradualness Facilitates Knowledge Refinement , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Wray L. BuntineRIACS Theory Reenement on Bayesian Networks , 1991 .

[35]  Abraham Kandel,et al.  Hybrid Architectures for Intelligent Systems , 1992 .

[36]  Jude W. Shavlik,et al.  Training Knowledge-Based Neural Networks to Recognize Genes , 1990, NIPS.

[37]  Pat Langley,et al.  Using Background Knowledge in Concept Formation , 1991, ML.

[38]  David C. Wilkins,et al.  Improving the Performance of Inconsistent Knowledge Bases via Combined Optimization Method , 1991, ML.

[39]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[40]  J. Nadal,et al.  Learning in feedforward layered networks: the tiling algorithm , 1989 .

[41]  Brown,et al.  DNA Synthesis , 1978, NATO Advanced Study Institutes Series.

[42]  Timothy Cain,et al.  The DUCTOR: A Theory Revision System for Propositional Domains , 1991, ML.

[43]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[44]  David W. Opitz,et al.  Heuristically Expanding Knowledge-Based Neural Networks , 1993, IJCAI.

[45]  David Heckerman,et al.  Probabilistic Interpretation for MYCIN's Certainty Factors , 1990, UAI.

[46]  Raymond J. Mooney,et al.  Symbolic Revision of Theories with M-of-N Rules , 1993, IJCAI.

[47]  Marco Valtorta More Results on the Complexity of Knowledge Base Refinement: Belief Networks , 1990, ML.

[48]  Jonathan Baxter,et al.  Learning internal representations , 1995, COLT '95.

[49]  D. Ourston Using explanation-based and empirical methods in theory revision , 1991 .

[50]  Bruce G. Buchanan,et al.  On generality and problem solving: a case study using the DENDRAL program , 1970 .

[51]  Raymond J. Mooney,et al.  Extending Theory Refinement to M-of-N Rules , 1993, Informatica.

[52]  Edward A. Feigenbaum,et al.  The fifth generation - artificial intelligence and Japan's computer challenge to the world , 1991 .

[53]  William W. Cohen Compiling prior knowledge into an explicit basis , 1992, ICML 1992.

[54]  Bruce G. Buchanan,et al.  The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .

[55]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[56]  Jude W. Shavlik,et al.  Interpretation of Artificial Neural Networks: Mapping Knowledge-Based Neural Networks into Rules , 1991, NIPS.

[57]  S. Antonarakis The mapping and sequencing of the human genome. , 1990, Southern medical journal.

[58]  Hamid R. Berenji,et al.  Refinement of Approximate Reasoning-based Controllers by Reinforcement Learning , 1991, ML.

[59]  R. Mooney,et al.  A Multistrategy Approach to Theory Refinement , 1997 .

[60]  Marco Valtoria Some results on the complexity of knowledge-base refinement , 1989, ICML 1989.

[61]  Ronen Feldman,et al.  Bias-Driven Revision of Logical Domain Theories , 1993, J. Artif. Intell. Res..

[62]  Raymond J. Mooney,et al.  Changing the Rules: A Comprehensive Approach to Theory Refinement , 1990, AAAI.

[63]  Allen Ginsberg,et al.  Theory Revision via Prior Operationalization , 1988, AAAI.

[64]  Raymond J. Mooney,et al.  Theory Refinement Combining Analytical and Empirical Methods , 1994, Artif. Intell..

[65]  L.-M. Fu,et al.  Integration of neural heuristics into knowledge-based inference , 1989, International 1989 Joint Conference on Neural Networks.