A Computational Study of a Cutting Plane Algorithm for University Course Timetabling

In this paper, we describe a case-study where a Branch-and-Cut algorithm yields the “optimal” solution of a real-world timetabling problem of University courses (University Course Timetabling problem).The problem is formulated as a Set Packing problem with side constraints. To tighten the initial formulation, we utilize well-known valid inequalities of the Set Packing polytope, namely Clique and Lifted Odd-Hole inequalities. We also analyze the combinatorial properties of the problem to introduce new families of cutting planes that are not valid for the Set Packing polytope, and their separation algorithms. These cutting planes turned out to be very effective to yield the optimal solution of a set of real-world instances with up to 69 courses, 59 teachers, and 15 rooms.

[1]  David Abramson,et al.  A very high speed architecture for simulated annealing , 1992, Computer.

[2]  Hana Rudová,et al.  University Course Timetabling with Soft Constraints , 2002, PATAT.

[3]  Luca Di Gaspero,et al.  Multi-neighbourhood Local Search with Application to Course Timetabling , 2002, PATAT.

[4]  L. D. Gaspero,et al.  LOCAL SEARCH TECHNIQUES FOR EDUCATIONAL TIMETABLING PROBLEMS , 2001 .

[5]  D. de Werra,et al.  The combinatorics of timetabling , 1997 .

[6]  D. de Werra,et al.  Complexity of some special types of timetabling problems Journal of Scheduling , 2002 .

[7]  Joseph Y.-T. Leung,et al.  Handbook of Scheduling: Algorithms, Models, and Performance Analysis , 2004 .

[8]  Edmund K. Burke,et al.  Practice and Theory of Automated Timetabling IV , 2002, Lecture Notes in Computer Science.

[9]  Ralf Borndörfer,et al.  Set packing relaxations of some integer programs , 2000, Math. Program..

[10]  Edmund Ph. D. Burke,et al.  Practice and theory of automated timetabling : first international conference, Edinburgh, U.K., August 29-Septmber 1, 1995 : selected papers , 1996 .

[11]  Edmund Ph. D. Burke,et al.  Practice and Theory of Automated Timetabling III: Third International Conference, PATAT 2000 Konstanz, Germany, August 16-18, 2000 Selected Papers , 2001 .

[12]  Roman Barták,et al.  Minimal Perturbation Problem in Course Timetabling , 2004, PATAT.

[13]  Patrice Boizumault,et al.  Building University Timetables Using Constraint Logic Programming , 1995, PATAT.

[14]  Victor A. Bardadym Computer-Aided School and University Timetabling: The New Wave , 1995, PATAT.

[15]  E. A. Akkoyunlu A Linear Algorithm for Computing the Optimum University Timetable , 1973, Comput. J..

[16]  Gilbert Laporte,et al.  Recent Developments in Practical Course Timetabling , 1997, PATAT.

[17]  Calvin C. Gotlieb,et al.  The Construction of Class-Teacher Time-Tables , 1962, IFIP Congress.

[18]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[19]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[20]  Dominique de Werra,et al.  A generalized class-teacher model for some timetabling problems , 2002, Eur. J. Oper. Res..

[21]  Manfred W. Padberg,et al.  On the facial structure of set packing polyhedra , 1973, Math. Program..

[22]  Domingos M. Cardoso,et al.  The teacher assignment problem: A special case of the fixed charge transportation problem , 1997 .

[23]  Saul I. Gass,et al.  Encyclopedia of Operations Research and Management Science , 1997 .

[24]  Edmund K. Burke,et al.  Applications to timetabling , 2004 .

[25]  Efthymios Housos,et al.  An integer programming formulation for a case study in university timetabling , 2004, Eur. J. Oper. Res..

[26]  Edmund Ph. D. Burke,et al.  Practice and theory of automated timetabling II : second International Conference, PATAT '97, Toronto, Canada, August 20-22, 1997 : selected papers , 1998 .

[27]  Michael W. Carter,et al.  A Lagrangian Relaxation Approach To The Classroom Assignment Problem , 1989 .

[28]  E. D. Giorgi Selected Papers , 2006 .

[29]  Edmund K. Burke,et al.  Practice and Theory of Automated Timetabling III , 2001, Lecture Notes in Computer Science.

[30]  Carlo Mannino,et al.  An exact algorithm for the maximum stable set problem , 1994, Comput. Optim. Appl..

[31]  Charles E. Wells,et al.  A MATHEMATICAL PROGRAMMING MODEL FOR FACULTY COURSE ASSIGNMENTS , 1984 .

[32]  Panagiotis Miliotis,et al.  Implementation of a university course and examination timetabling system , 2001, Eur. J. Oper. Res..

[33]  Gilbert Laporte,et al.  Recent Developments in Practical Examination Timetabling , 1995, PATAT.

[34]  Patrick De Causmaecker,et al.  Practice and Theory of Automated Timetabling IV: 4th International Conference, PATAT 2002, Gent, Belgium, August 21-23, 2002, Selected Revised Papers , 2003 .

[35]  Michael Sampels,et al.  A MAX-MIN Ant System for the University Course Timetabling Problem , 2002, Ant Algorithms.

[36]  Philipp Kostuch,et al.  The University Course Timetabling Problem with a Three-Phase Approach , 2004, PATAT.

[37]  Marco Dorigo,et al.  Metaheuristics for High School Timetabling , 1998, Comput. Optim. Appl..

[38]  David Corne,et al.  Evolutionary Timetabling: Practice, Prospects and Work in Progress , 1994 .

[39]  Anthony Wren,et al.  Scheduling, Timetabling and Rostering - A Special Relationship? , 1995, PATAT.

[40]  Norman L. Lawrie An integer linear programming model of a school timetabling problem , 1969, Comput. J..

[41]  Michael W. Carter,et al.  OR Practice - A Survey of Practical Applications of Examination Timetabling Algorithms , 1986, Oper. Res..

[42]  Edmund K. Burke,et al.  Automated University Timetabling: The State of the Art , 1997, Comput. J..

[43]  D. de Werra,et al.  An introduction to timetabling , 1985 .

[44]  Andrea Schaerf,et al.  A Survey of Automated Timetabling , 1999, Artificial Intelligence Review.

[45]  Efthymios Housos,et al.  Timetabling for Greek high schools , 1997 .

[46]  Martin W. P. Savelsbergh,et al.  The relation of time indexed formulations of single machine scheduling problems to the node packing problem , 2002, Math. Program..

[47]  Jacques A. Ferland,et al.  Timetabling problem for university as assignment of activities to resources , 1985, Comput. Oper. Res..

[48]  M. Padberg,et al.  Solving airline crew scheduling problems by branch-and-cut , 1993 .

[49]  Edmund K. Burke,et al.  Selected papers from the First International Conference on Practice and Theory of Automated Timetabling , 1995 .

[50]  Ben Paechter,et al.  Extensions to a Memetic Timetabling System , 1995, PATAT.

[51]  Sanja Petrovic,et al.  Recent research directions in automated timetabling , 2002, Eur. J. Oper. Res..

[52]  Edmund K. Burke,et al.  Practice and Theory of Automated Timetabling V, 5th International Conference, PATAT 2004, Pittsburgh, PA, USA, August 18-20, 2004, Revised Selected Papers , 2005, PATAT.

[53]  Edmund K. Burke,et al.  A Memetic Algorithm for University Exam Timetabling , 1995, PATAT.

[54]  Slim Abdennadher,et al.  University course timetabling using constraint handling rules , 2000, Appl. Artif. Intell..

[55]  A. Tripathy School Timetabling---A Case in Large Binary Integer Linear Programming , 1984 .

[56]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .