Fluctuations of the Extreme Eigenvalues of Finite Rank Deformations of Random Matrices

Consider a deterministic self-adjoint matrix $X_n$ with spectral measure converging to a compactly supported probability measure, the largest and smallest eigenvalues converging to the edges of the limiting measure. We perturb this matrix by adding a random finite rank matrix with delocalised eigenvectors and study the extreme eigenvalues of the deformed model. We give necessary conditions on the deterministic matrix $X_n$ so that the eigenvalues converging out of the bulk exhibit Gaussian fluctuations, whereas the eigenvalues sticking to the edges are very close to the eigenvalues of the non-perturbed model and fluctuate in the same scale. We generalize these results to the case when $X_n$ is random and get similar behavior when we deform some classical models such as Wigner or Wishart matrices with rather general entries or the so-called matrix models.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  F. T. Wright,et al.  A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables , 1971 .

[3]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[4]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[5]  Z. D. Bai,et al.  Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .

[6]  M. Wadati,et al.  Correlation Functions of Random Matrix Ensembles Related to Classical Orthogonal Polynomials. III , 1992 .

[7]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[8]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[9]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[10]  K. Johansson On fluctuations of eigenvalues of random Hermitian matrices , 1998 .

[11]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[12]  Alice Guionnet,et al.  Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices , 2002 .

[13]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[14]  Z. Bai,et al.  CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.

[15]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.

[16]  Jianfeng Yao,et al.  On the convergence of the spectral empirical process of Wigner matrices , 2005 .

[17]  Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices , 2005, math-ph/0507023.

[18]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[19]  A. Ruzmaikina Universality of the Edge Distribution of Eigenvalues of Wigner Random Matrices with Polynomially Decaying Distributions of Entries , 2006 .

[20]  Limiting laws of linear eigenvalue statistics for Hermitian matrix models , 2006, math/0608719.

[21]  S. Péché Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.

[22]  D. Féral,et al.  The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.

[23]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[24]  Z. Bai,et al.  Central limit theorems for eigenvalues in a spiked population model , 2008, 0806.2503.

[25]  Dong Wang,et al.  The largest sample eigenvalue distribution in the rank 1 quaternionic spiked model of Wishart ensemble , 2007, 0711.2722.

[26]  C. Donati-Martin,et al.  The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.

[27]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[28]  C. Donati-Martin,et al.  Central limit theorems for eigenvalues of deformations of Wigner matrices , 2009, 0903.4740.

[29]  Roberto Garello,et al.  Probability of Missed Detection in Eigenvalue Ratio Spectrum Sensing , 2009, 2009 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications.

[30]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[31]  M. Shcherbina Edge Universality for Orthogonal Ensembles of Random Matrices , 2008, 0812.3228.

[32]  Alice Guionnet,et al.  Large Random Matrices: Lectures on Macroscopic Asymptotics , 2009 .

[33]  Zhidong Bai,et al.  CLT for Linear Spectral Statistics of Wigner matrices , 2009 .

[34]  S. P'ech'e,et al.  The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case , 2008, 0812.2320.

[35]  Boaz Nadler,et al.  Non-Parametric Detection of the Number of Signals: Hypothesis Testing and Random Matrix Theory , 2009, IEEE Transactions on Signal Processing.

[36]  Raj Rao Nadakuditi,et al.  The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.

[37]  L. Pastur,et al.  CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF RANDOM MATRICES WITH INDEPENDENT ENTRIES , 2008, 0809.4698.

[38]  C. Male The norm of polynomials in large random and deterministic matrices , 2010, 1004.4155.

[39]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[40]  A. Guionnet,et al.  Large deviations of the extreme eigenvalues of random deformations of matrices , 2010, Probability Theory and Related Fields.

[41]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.

[42]  Terence Tao,et al.  Random matrices: Localization of the eigenvalues and the necessity of four moments , 2010 .