Broadband antireflective coating stack based on mesoporous silica by acid-catalyzed sol-gel method for concentrated photovoltaic application

Abstract Silica multi-layer stacks have been designed with the aim to provide broadband antireflective (AR) properties for glass components in concentrated photovoltaic (CPV) application. Silica porous coatings were grown by combining acid-catalyzed sol-gel route and evaporation induced self-assembly (EISA) method with four types of organic/inorganic systems. Sols were prepared using tetraethylorthosilicate (TEOS) as inorganic precursor assembled with two di-block copolymers, one tri-block copolymer and one cationic surfactant as organic templates. Optical properties were characterized by ellipsometry and spectrophotometry while the material structure was analyzed by environmental ellipsometric porosimetry (EEP) and atomic force microscopy (AFM). The concentration of inorganic and organic phases was optimized and a broadband AR bi-layer stack was obtained providing a 7.2% (under the reference AM1.5 solar spectral irradiance) increase in transmittance over bare glass in the wavelength range 300–2000 nm when coated on both sides.

[1]  Jean-Louis Scartezzini,et al.  Sol-gel deposition and optical characterization of multilayered SiO2/Ti1-xSixO2 coatings on solar collector glasses , 2006 .

[2]  J. Mackenzie,et al.  Sol-gel processing of silica. II: The role of the catalyst , 1986 .

[3]  Harish C. Barshilia,et al.  High performance single layer nano-porous antireflection coatings on glass by sol-gel process for solar energy applications , 2015 .

[4]  L. Landau,et al.  Dragging of a Liquid by a Moving Plate , 1988 .

[5]  Plinio Innocenzi,et al.  Hydrophobic, Antireflective, Self-Cleaning, and Antifogging Sol−Gel Coatings: An Example of Multifunctional Nanostructured Materials for Photovoltaic Cells , 2010 .

[6]  A. Shanaghi,et al.  Stable multilayer TiO2–SiO2 coatings for antireflection applications , 2016, Glass Physics and Chemistry.

[7]  Jun Shen,et al.  A scratch-resistant and hydrophobic broadband antireflective coating by sol–gel method , 2011 .

[8]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[9]  Seeram Ramakrishna,et al.  Porous SiO2 anti-reflective coatings on large-area substrates by electrospinning and their application to solar modules , 2013 .

[10]  Ruoyu Chen,et al.  Preparation of hydrophobic and abrasion-resistant silica antireflective coatings by using a cationic surfactant to regulate surface morphologies , 2014 .

[11]  Eduardo F. Fernández,et al.  Models for the electrical characterization of high concentration photovoltaic cells and modules: A review , 2013 .

[12]  C. J. Brinker,et al.  Hydrolysis and condensation of silicates: Effects on structure , 1988 .

[13]  B. Jiang,et al.  Preparation of porous silica films in a binary template system for double-layer broadband antireflective coatings , 2015 .

[14]  James P. Dunlop,et al.  Photovoltaic Systems , 2007 .

[15]  B. Jiang,et al.  Preparation of mechanically stable triple-layer interference broadband antireflective coatings with self-cleaning property by sol–gel technique , 2017 .

[16]  Sven Wanka,et al.  New module design with 4-junction solar cells for high efficiencies , 2015 .

[17]  J. Boilot,et al.  NMR study of the sol/gel polymerization , 1987 .

[18]  Shangjun Ding,et al.  Sol–gel preparation and characterization of nanoporous ZnO/SiO2 coatings with broadband antireflection properties , 2011 .

[19]  Guozhong Cao,et al.  Optically transparent superhydrophobic silica-based films , 2005 .

[20]  C. Sanchez,et al.  Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[21]  F. Eirich,et al.  Hydrolysis of Ethyl Silicate , 1950 .

[22]  Bo-Tau Liu,et al.  Antireflective surface fabricated from colloidal silica nanoparticles , 2010 .

[23]  J. Deubener,et al.  Thermal resistance of nanoporous antireflective coatings on silica glass for solar tower receivers , 2010 .

[24]  F. Trifiró,et al.  Silica preparation via sol-gel method: a comparison with ammoximation activity , 1995 .

[25]  V. Lair,et al.  XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries , 2011 .

[26]  Vasilis Fthenakis,et al.  Glass needs for a growing photovoltaics industry , 2015 .

[27]  M. R. Baklanov,et al.  Determination of pore size distribution in thin films by ellipsometric porosimetry , 2000 .

[28]  Choon‐Gi Choi,et al.  Accelarated Publication: Fabrication of antireflection nanostructures by hybrid nano-patterning lithography , 2010 .

[29]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[30]  Á. Morales,et al.  Surface modification of porous antireflective coatings for solar glass covers , 2011 .

[31]  Xinxiang Zhang,et al.  Preparation of antireflective coatings with high transmittance and enhanced abrasion-resistance by a base/acid two-step catalyzed sol–gel process , 2011 .

[32]  Gang Xu,et al.  Cost-effective nanoporous SiO2–TiO2 coatings on glass substrates with antireflective and self-cleaning properties , 2013 .

[33]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[34]  M. Fardad,et al.  Catalysts and the structure of SiO2 sol-gel films , 2000 .

[35]  Sudipta Seal,et al.  Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol−Gel Technique , 2007 .

[36]  Cheng Peng,et al.  Preparation of silica antireflective films for solar energy application , 2013 .

[37]  Garikoitz Beobide,et al.  Using scanning probe microscopy to study the effect of molecular weight of poly(3-hexylthiophene) on the performance of poly(3-hexylthiophene):TiO2 nanorod photovoltaic devices , 2009 .

[38]  Bin Zhou,et al.  A new method to control nano-porous structure of sol-gel-derived silica films and their properties , 2001 .

[39]  Ying Zhang,et al.  Study of tri-layer antireflection coatings prepared by sol–gel method , 2012, Journal of Sol-Gel Science and Technology.

[40]  Z. Alothman A Review: Fundamental Aspects of Silicate Mesoporous Materials , 2012, Materials.

[41]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[42]  Jun Shen,et al.  Sol–gel derived durable antireflective coating for solar glass , 2010 .

[43]  Giuseppe Gigli,et al.  Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[44]  J. N. Wang,et al.  Self-Cleaning and Antireflective Films for All-Glass Evacuated Tube Solar Collectors , 2015 .

[45]  Din-Guo Chen,et al.  Anti-reflection (AR) coatings made by sol–gel processes: A review , 2001 .

[46]  Byoung-Gon Yu,et al.  Investigation of the effect of calcination temperature on HMDS-treated ordered mesoporous silica film. , 2008, Journal of colloid and interface science.

[47]  L. Scriven Physics and Applications of DIP Coating and Spin Coating , 1988 .

[48]  Galo J. A. A. Soler-Illia,et al.  Fundamentals of Mesostructuring Through Evaporation‐Induced Self‐Assembly , 2004 .

[49]  C. Ting,et al.  Subwavelength structures for broadband antireflection application , 2009 .

[50]  J. Mackenzie,et al.  Sol-gel processing of silica: I. The role of the starting compounds , 1986 .

[51]  Rocío Bayón,et al.  Long-term durability of sol–gel porous coatings for solar glass covers , 2009 .

[52]  Marco Faustini,et al.  Preparation of Sol−Gel Films by Dip-Coating in Extreme Conditions , 2010 .

[53]  G. Ozin,et al.  Periodic mesoporous organosilicas with organic groups inside the channel walls , 1999, Nature.

[54]  B. Jiang,et al.  Sol-gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis. , 2014, ACS applied materials & interfaces.

[55]  João Mendes-Lopes,et al.  Recent trends in concentrated photovoltaics concentrators’ architecture , 2014 .

[56]  Augustin-Louis Cauchy,et al.  Sur la réfraction et la réflexion de la lumière , 2009 .

[57]  David Stroud,et al.  The effective medium approximations : Some recent developments , 1998 .

[58]  G. Timò,et al.  Anti-soiling coatings for solar cell cover glass: Climate and surface properties influence , 2018, Solar Energy Materials and Solar Cells.

[59]  Martin A. Green,et al.  Solar cell efficiency tables (version 47) , 2016 .

[60]  Rocío Bayón,et al.  Effect of Additives on the Durability and Properties of Antireflective Films for Solar Glass Covers , 2008 .