Metric Ricci curvature for $PL$ manifolds

We introduce a metric notion of Ricci curvature for manifolds and study its convergence properties. We also prove a fitting version of the Bonnet-Myers theorem, for surfaces as well as for a large class of higher dimensional manifolds.

[1]  Emil Saucan,et al.  Surface Triangulation - The Metric Approach , 2004, ArXiv.

[2]  A. Bernig CURVATURE BOUNDS ON SUBANALYTIC SPACES , 2003 .

[3]  Г.Я. Перельман,et al.  Ricci flow with surgery on three-manifolds , 2003 .

[4]  Emil Saucan,et al.  Fat Triangulations and Differential Geometry , 2011, ArXiv.

[5]  J. Rubinstein Problems around 3-manifolds , 2009, 0904.0017.

[6]  David A. Stone Correction to my paper “A combinatorial analogue of a theorem of Myers” , 1976 .

[7]  J. Munkres,et al.  Elementary Differential Topology. , 1967 .

[8]  Andrea Fuster,et al.  A Riemannian scalar measure for diffusion tensor images , 2009, Pattern Recognit..

[9]  P. Alsing,et al.  The Simplicial Ricci Tensor , 2011, 1107.2458.

[10]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[11]  Preface A Panoramic View of Riemannian Geometry , 2003 .

[12]  Aaron Trout Positively Curved Combinatorial 3-Manifolds , 2010, Electron. J. Comb..

[13]  James E. pLebensohn Geometry and the Imagination , 1952 .

[14]  Emil Saucan,et al.  On the properties of the combinatorial Ricci flow for surfaces , 2011, ArXiv.

[15]  Andreas Bernig,et al.  Curvature tensors of singular spaces , 2006 .

[16]  Emil Saucan,et al.  Metric Methods in Surface Triangulation , 2009, IMA Conference on the Mathematics of Surfaces.

[17]  D. Glickenstein,et al.  Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds , 2009, 0906.1560.

[19]  Emil Saucan,et al.  A metric Ricci flow for surfaces and its applications , 2014 .

[20]  Gilad Lerman,et al.  On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions , 2008, J. Approx. Theory.

[21]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[22]  J. Munkres Obstructions to the smoothing of piecewise-differentiable homeomorphisms , 1959 .

[23]  Yehoshua Y. Zeevi,et al.  Ricci curvature and flow for image denoising and super-resolution , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[24]  Yu. D. Burago,et al.  A.D. Alexandrov spaces with curvature bounded below , 1992 .

[25]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[26]  Emil Saucan Note on a Theorem of Munkres , 2004 .

[27]  D. A. Stone A combinatorial analogue of a theorem of Myers , 1976 .

[28]  Emil Saucan,et al.  Fat Triangulations, Curvature and Quasiconformal Mappings , 2012, Axioms.

[29]  Spaces with bounded curvature and distance geometry , 1986 .

[30]  J. L. Bryant Piecewise Linear Topology , 2001 .

[31]  W. Kühnel,et al.  Smooth approximation of polyhedral surfaces regarding curvatures , 1982 .

[32]  Robin Forman,et al.  Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature , 2003, Discret. Comput. Geom..

[33]  A vanishing theorem for piecewise constant curvature spaces , 1986 .

[34]  Yehoshua Y. Zeevi,et al.  Combinatorial Ricci Curvature and Laplacians for Image Processing , 2009, 2009 2nd International Congress on Image and Signal Processing.

[35]  Yehoshua Y. Zeevi,et al.  Geometric approach to sampling and communication , 2010, ArXiv.

[36]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[37]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[38]  C. Plaut Metric Spaces of Curvature ⩾ k , 2001 .

[39]  Geodesics in piecewise linear manifolds , 1976 .

[40]  L. M. Blumenthal,et al.  Studies in geometry , 1972 .

[41]  D. A. Stone,et al.  Sectional curvature in piecewise linear manifolds , 1973 .

[42]  Robert Schrader,et al.  On the curvature of piecewise flat spaces , 1984 .