Linearization of time-delay systems by input-output injection and output transformation

In the present paper necessary and sufficient geometric conditions for the equivalence of a single input single output nonlinear time-delay system, under bicausal change of coordinates and regular output transformation, to a linear weakly observable time-delay system up to input-output injection are given. The obtained results are then applied to the observer design problem.

[1]  Alfredo Germani,et al.  A new approach to state observation of nonlinear systems with delayed output , 2002, IEEE Trans. Autom. Control..

[2]  L. A. Marquez-Martinez,et al.  On linear equivalence for time-delay systems , 2010, Proceedings of the 2010 American Control Conference.

[3]  Toshiki Oguchi,et al.  Input-output linearization of retarded non-linear systems by using an extension of Lie derivative , 2002 .

[4]  A. Olbrot,et al.  Observability and related structural results for linear hereditary systems , 1981 .

[5]  Franck Plestan,et al.  Linearization by generalized input-output injection , 1997 .

[6]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[7]  Salvatore Monaco,et al.  Canonical observer forms for multi-output systems up to coordinate and output transformations in discrete time , 2009, Autom..

[8]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[9]  A. Isidori Nonlinear Control Systems , 1985 .

[10]  Claude H. Moog,et al.  Extended Lie Brackets for Nonlinear Time-Delay Systems , 2011, IEEE Transactions on Automatic Control.

[11]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[12]  Martín Velasco-Villa,et al.  Observability and observers for nonlinear systems with time delays , 2000, Kybernetika.

[13]  H. Keller Non-linear observer design by transformation into a generalized observer canonical form , 1987 .

[14]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[15]  M. Hou,et al.  Observer with linear error dynamics for nonlinear multi-output systems , 1999 .

[16]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[17]  Driss Boutat,et al.  On Observation of Time-Delay Systems With Unknown Inputs , 2011, IEEE Transactions on Automatic Control.

[18]  Alain Glumineau,et al.  Direct transformation of nonlinear systems into state affine MISO form for observer design , 2003, IEEE Trans. Autom. Control..

[19]  Claude H. Moog,et al.  Input-output feedback linearization of time-delay systems , 2004, IEEE Transactions on Automatic Control.

[20]  Claude H. Moog,et al.  On the observer canonical form for Nonlinear Time–Delay Systems , 2011 .

[21]  Toshiki Oguchi A finite spectrum assignment for retarded non-linear systems and its solvability condition , 2007, Int. J. Control.

[22]  C. Moog,et al.  New algebraic-geometric conditions for the linearization by input-output injection , 1996, IEEE Trans. Autom. Control..

[23]  Salvatore Monaco,et al.  Controller and Observer Normal Forms in Discrete-Time , 2008 .

[24]  Bernt Wennberg,et al.  On analytic and algebraic observability of nonlinear delay systems , 2010, Autom..

[25]  Gildas Besançon,et al.  On output transformations for state linearization up to output injection , 1999, IEEE Trans. Autom. Control..

[26]  Vincent Andrieu,et al.  On the Existence of a Kazantzis--Kravaris/Luenberger Observer , 2006, SIAM J. Control. Optim..

[27]  Salvatore Monaco,et al.  Linearization by Output Injection under Approximate Sampling , 2009, Eur. J. Control.

[28]  Claude H. Moog,et al.  Controllability of driftless nonlinear time-delay systems , 2013, Syst. Control. Lett..

[29]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[30]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[31]  Xiaohua Xia,et al.  Analysis of nonlinear time-delay systems using modules over non-commutative rings , 2002, Autom..