Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems

In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. In a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse grid correction step. We show that even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid method. The view of multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale dependent weighting of the multigrid preconditioner and the usual background error covariance matrix based preconditioner is proposed and brings significant improvements.

[1]  Philippe Courtier,et al.  Dual formulation of four‐dimensional variational assimilation , 1997 .

[2]  Jun Zhang Multi-level minimal residual smoothing: a family of general purpose mutigrid acceleration techniques , 1998 .

[3]  Yvan Notay Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..

[4]  H. Ngodock,et al.  Background-error correlation model based on the implicit solution of a diffusion equation , 2010 .

[5]  T. Washio On the Use of Multigrid as a Preconditioner , 2001 .

[6]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[7]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[8]  Andrew J. Wathen,et al.  Optimal Solvers for PDE-Constrained Optimization , 2010, SIAM J. Sci. Comput..

[9]  Andrew V. Knyazev,et al.  Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods1 , 2015, ICCS.

[10]  Stephen G. Nash,et al.  Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations , 2005, SIAM J. Sci. Comput..

[11]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[12]  Serge Gratton,et al.  Conjugate gradients versus multigrid solvers for diffusion‐based correlation models in data assimilation , 2013 .

[13]  Gérald Desroziers,et al.  Accelerating and parallelizing minimizations in ensemble and deterministic variational assimilations , 2012 .

[14]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[15]  P. Lax,et al.  Systems of conservation laws , 1960 .

[16]  Adrian Sandu,et al.  Efficient methods for computing observation impact in 4D-Var data assimilation , 2013, Computational Geosciences.

[17]  Osamu Tatebe,et al.  The multigrid preconditioned conjugate gradient method , 1993 .

[18]  Nancy Nichols,et al.  Conditioning and preconditioning of the variational data assimilation problem , 2011 .

[19]  Alfio Borzì,et al.  Multigrid Methods for PDE Optimization , 2009, SIAM Rev..

[20]  Ulrich Rüde,et al.  Optimizing the number of multigrid cycles in the full multigrid algorithm , 2010, Numer. Linear Algebra Appl..

[21]  Piet Hemker,et al.  On the order of prolongations and restrictions in multigrid procedures , 1990 .

[22]  R. Purser The Filtering of Meteorological Fields , 1987 .

[23]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[24]  P. Courtier,et al.  Correlation modelling on the sphere using a generalized diffusion equation , 2001 .

[25]  A. Weaver,et al.  Representation of correlation functions in variational assimilation using an implicit diffusion operator , 2010 .

[26]  A. Brandt Guide to multigrid development , 1982 .

[27]  Nancy Nichols,et al.  Conditioning of incremental variational data assimilation, with application to the Met Office system , 2011 .

[28]  Wei-Pai Tang,et al.  Sparse Approximate Inverse Smoother for Multigrid , 2000, SIAM J. Matrix Anal. Appl..