Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys

[1]  E. Han,et al.  The role of second phases in the corrosion behavior of Mg–5Zn alloy , 2012 .

[2]  K. Kuroda,et al.  Improvement in corrosion characteristics of AZ31 Mg alloy by square pulse anodizing between transpassive and active regions , 2012 .

[3]  R. Mishra,et al.  Corrosion behavior of a friction stir processed rare-earth added magnesium alloy , 2012 .

[4]  R. Arrabal,et al.  Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5wt.% NaCl solution , 2012 .

[5]  Wei-jia Tang,et al.  On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction , 2012 .

[6]  Mohammed Rafiq Abdul Kadir,et al.  Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys , 2012 .

[7]  H. Jafari,et al.  Influence of hot rolling parameters on microstructure and biodegradability of Mg–1Ca alloy in simulated body fluid , 2012 .

[8]  G. Song,et al.  Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution , 2012 .

[9]  C. Hutchinson,et al.  Corrosion of heat treated magnesium alloy ZE41 , 2011 .

[10]  J. Kubásek,et al.  Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. , 2011, Acta biomaterialia.

[11]  M. Gibson,et al.  Electrochemical behaviour and corrosion of Mg-Y alloys , 2011 .

[12]  Yong Han,et al.  Mechanical and in vitro degradation behavior of ultrafine calcium polyphosphate reinforced magnesium-alloy composites , 2011 .

[13]  W. Bai,et al.  Corrosion behaviour of AZ31B magnesium alloy in NaCl solutions saturated with CO2 , 2011 .

[14]  P. Chu,et al.  In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. , 2011, Acta biomaterialia.

[15]  Junhua Hu,et al.  Effect of electrodeposition modes on surface characteristics and corrosion properties of fluorine-doped hydroxyapatite coatings on Mg-Zn-Ca alloy , 2011 .

[16]  M. Ibrahim,et al.  Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative , 2011 .

[17]  Zunjie Wei,et al.  Surface microstructure and cell compatibility of calcium silicate and calcium phosphate composite coatings on Mg-Zn-Mn-Ca alloys for biomedical application. , 2011, Colloids and surfaces. B, Biointerfaces.

[18]  Yufeng Sun,et al.  Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid , 2011 .

[19]  Zunjie Wei,et al.  Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg–3Ca alloys for biomedical application , 2011 .

[20]  T.S.N. Sankara Narayanan,et al.  Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer’s solution – Long term evaluation by EIS , 2011 .

[21]  P. Lin,et al.  Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing , 2011 .

[22]  A. Atrens,et al.  An innovative specimen configuration for the study of Mg corrosion , 2011 .

[23]  M. An,et al.  Experimental study of electrochemical corrosion behaviour of bilayer on AZ31B Mg alloy , 2010 .

[24]  G. Thompson,et al.  Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion , 2010 .

[25]  M. Liu,et al.  The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys , 2010 .

[26]  T. Woodfield,et al.  In-vitro dissolution of magnesium-calcium binary alloys: clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[27]  D. Eliezer,et al.  Some particularities of the corrosion behaviour of Mg–Zn–Mn–Si–Ca alloys in alkaline chloride solutions , 2010 .

[28]  Yufeng Zheng,et al.  A review on magnesium alloys as biodegradable materials , 2010 .

[29]  Jianwei Xu,et al.  Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application. , 2010, Acta biomaterialia.

[30]  Liguo Wang,et al.  Microstructure and corrosion properties of as sub-rapid solidification Mg–Zn–Y–Nd alloy in dynamic simulated body fluid for vascular stent application , 2010, Journal of materials science. Materials in medicine.

[31]  Andrej Atrens,et al.  Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation , 2010 .

[32]  Kazuhiro Hono,et al.  Age-hardening response of Mg-0.3 at.%Ca alloys with different Zn contents , 2009 .

[33]  F. Pan,et al.  Comparison about effects of Ce, Sn and Gd additions on as-cast microstructure and mechanical properties of Mg–3.8Zn–2.2Ca (wt%) magnesium alloy , 2009 .

[34]  Ke Yang,et al.  Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application , 2009 .

[35]  N. Aung,et al.  Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy , 2009 .

[36]  Lei Yang,et al.  Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application , 2008 .

[37]  Zhen-hua Chen,et al.  Microstructures and Properties of Rapidly Solidified Mg-Zn-Ca Alloys , 2008 .

[38]  Y. Wan,et al.  Preparation and characterization of a new biomedical magnesium–calcium alloy , 2008 .

[39]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[40]  Y. Estrin,et al.  Bio-corrosion of a magnesium alloy with different processing histories , 2008 .

[41]  M. Wei,et al.  Corrosion process of pure magnesium in simulated body fluid , 2008 .

[42]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[43]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[44]  K. Prabhu,et al.  Heat transfer and solidification behaviour of modified A357 alloy , 2007 .

[45]  Z. Fan,et al.  Thermodynamic modelling of the Y–Zn and Mg–Zn–Y systems , 2006 .

[46]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[47]  J. B. Vander Sande,et al.  Precipitation hardening in Mg-Ca-Zn alloys , 2006 .

[48]  M. Bamberger,et al.  Solidification, solution treatment and age hardening of a Mg–1.6 wt.% Ca–3.2 wt.% Zn alloy , 2006 .

[49]  B. Muddle,et al.  Precipitation-hardened Mg-Ca-Zn alloys with superior creep resistance , 2005 .

[50]  Kazuhiro Hono,et al.  TEM and 3DAP characterization of an age-hardened Mg–Ca–Zn alloy , 2005 .

[51]  A. K. Dahle,et al.  Theoretical and Practical Considerations of Grain Refinement of Mg-Al Alloys , 2005 .

[52]  J. B. Vander Sande,et al.  Second phase formation in melt-spun Mg–Ca–Zn alloys , 2004 .

[53]  J. Vormann Magnesium: nutrition and metabolism. , 2003, Molecular aspects of medicine.

[54]  J. B. Sande,et al.  Precipitate Crystal Structure Determination in Melt Spun Mg-1.5wt%Ca-6wt%Zn Alloy , 2002, Microscopy and Microanalysis.