Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs

Abstract Partially yttria stabilized zirconia (PYSZ) based thermal barrier coatings (TBC) manufactured by electron beam-physical vapour deposition (EB-PVD) protect turbine blades, working under severe service conditions in aero engines and stationary turbines. These coatings show a high strain tolerance relying on their unique morphology which is comprised of weakly bonded, preferred-oriented columns, voids between feather-like sub-columns and, finally, of intra-columnar closed pores. The results obtained in this work demonstrate that variation of the EB-PVD process parameters alters the resulting columnar morphology and porosity of the coatings. The physical properties and, most importantly, thermal conductivity, are greatly affected by these morphological alterations. This study investigates three morphologically different EB-PVD PYSZ TBC top coats in terms of the spatial and geometrical characteristics of their porosity and correlates those with the thermal conductivity values measured in as-coated state and after heat treatment at 1100 °C for 1 h and 100 h. Changes in the open and closed porosity caused by heat-treatment are characterized by small-angle neutron scattering (SANS), Brunauer–Emmett–Teller Method (BET) and scanning electron microscope (SEM). Correlation of shape and surface-area changes in all porosity types of the analysed coatings revealed that the thermal conductivity of these coatings is influenced primarily by size and shape distribution of the pores and secondarily by the pore surface-area available at the cross section perpendicular to the heat flux.

[1]  Jeffrey J. Thomas,et al.  The surface area of cement paste as measured by neutron scattering: Evidence for two C-S-H morphologies , 1998 .

[2]  Anthony G. Evans,et al.  Mechanisms controlling the durability of thermal barrier coatings , 2001 .

[3]  David R. Clarke,et al.  Crystallographic Texture and Thermal Conductivity of Zirconia Thermal Barrier Coatings Deposited on Different Substrates , 2004 .

[4]  A. Wiedenmann,et al.  New SANS instrument at the BER II reactor in Berlin; Germany , 1995 .

[5]  Xianfan Xu,et al.  Thermophysical properties of thermal barrier coatings , 1999 .

[6]  C. Leyens,et al.  Thermocyclic Behavior of Differently Stabilized and structured EB‐PVD thermal barrier coatings , 1997 .

[7]  Dongming Zhu,et al.  Thermal conductivity of EB-PVD thermal barrier coatings evaluated by a steady-state laser heat flux technique , 2001 .

[8]  Herbert Herman,et al.  Treatise on Materials Science and Technology , 1979 .

[9]  U. Schulz,et al.  Microstructure and texture of EB-PVD TBCs grown under different rotation modes , 2003 .

[10]  Thomas E. Strangman,et al.  Thermal barrier coatings for turbine airfoils , 1985 .

[11]  G. G. Long,et al.  Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings , 2003 .

[12]  Xuan Zheng,et al.  Thermal Conductivity Imaging of Thermal Barrier Coatings , 2005 .

[13]  O. Glatter,et al.  19 – Small-Angle X-ray Scattering , 1973 .

[14]  G. G. Long,et al.  Influence of Spray Angle on the Pore and Crack Microstructure of Plasma-Sprayed Deposits , 1997 .

[15]  Haydn N. G. Wadley,et al.  Low thermal conductivity vapor deposited zirconia microstructures , 2001 .

[16]  Jogender Singh,et al.  Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications , 2005 .

[17]  Z. Wang,et al.  Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings , 2003 .

[18]  C. Leyens,et al.  Review on Advanced EB‐PVD Ceramic Topcoats for TBC Applications , 2005 .

[19]  U. Schulz,et al.  The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings , 2006 .

[20]  T. Lu,et al.  Thermal conductivity of zirconia coatings with zig-zag pore microstructures , 2001 .

[21]  R. LeSar,et al.  A kinetic Monte Carlo simulation of film growth by physical vapor deposition on rotating substrates , 2005 .

[22]  G. G. Long,et al.  Microstructural characterization studies to relate the properties of thermal-spray coatings to feedstock and spray conditions ☆ , 2001 .

[23]  A. F. Renteria,et al.  Effect of ageing on microstructure changes in EB-PVD manufactured standard PYSZ top coat of thermal barrier coatings , 2006 .

[24]  C. Berndt,et al.  Characterization of the closed porosity in plasma-sprayed alumina , 1997 .

[25]  G. G. Long,et al.  Evolution of the void structure in plasma-sprayed YSZ deposits during heating , 1999 .

[26]  B. Jang,et al.  Influence of porosity on thermophysical properties of nano-porous zirconia coatings grown by electron beam-physical vapor deposition , 2006 .

[27]  P. Vuoristo,et al.  Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings , 2004 .

[28]  C. Leyens,et al.  Influence of Processing on Microstructure and Performance of Electron Beam Physical Vapor Deposition (EB-PVD) Thermal Barrier Coatings , 2002 .

[29]  K. Lawson,et al.  Methods to reduce the thermal conductivity of EB-PVD TBCs , 2002 .

[30]  U. Schulz,et al.  Influence of Deposition Conditions on Density and Microstructure of EB–PVD TBCs , 2002 .

[31]  J. Calo,et al.  The effects of the electronic structure of micropores on the small angle scattering of X-rays and neutrons , 2000 .

[32]  Jeffrey J. Thomas,et al.  Determination of the Neutron Scattering Contrast of Hydrated Portland Cement Paste using H2O/D2O Exchange , 1998 .

[33]  U. Schulz,et al.  Microstructure of ZrO2 Thermal Barrier Coatings Applied by EB-PVD , 2000 .

[34]  G. G. Long,et al.  Microstructural characterization of yttria-stabilized zirconia plasma-sprayed deposits using multiple small-angle neutron scattering , 2001 .

[35]  Tian Jian Lu,et al.  Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor Deposition , 2001 .

[36]  D. Clarke,et al.  Microstructural aspects of the sintering of thermal barrier coatings , 2004 .

[37]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[38]  R. Taylor Thermal conductivity determinations of thermal barrier coatings , 1998 .