4 – Reactor Design for a-Si: H Deposition

Publisher Summary The aim of this chapter is to analyze the reactor design for a-Si: H deposition in terms of electrical power dissipation, electron acceleration mechanisms, and discharge regimes. It examines the material balance and SiH4 conversion efficiency into a-Si: H and the main ingredients of the gas-phase and surface physicochemistry controlling the film growth and the final a-Si: H properties. This chapter discusses the electrical power dissipation in the discharge, and emphasizes the different mechanisms by which energy is coupled to the electrons and released into dissociation, ionization, attachment, and vibrational excitation of the molecules and eventually ends up on the walls via exothermic chemical reactions, gas heating, and thermal diffusion. It presents the material balance in terms of gas flow and SiH4 dissociation efficiency and the basic effects of gas phase and surface physicochemistry on the a-Si: H film quality in relation to the external reactor control parameters. This chapter also reviews the various types of reactors and their respective advantages and limitations. It also discusses alternative a-Si: H deposition methods and reactive sputtering.

[1]  J. Hanna,et al.  A novel preparation technique for preparing hydrogenated amorphous silicon with a more rigid and stable Si network , 1991 .

[2]  K. Riemann Theoretical analysis of the electrode sheath in rf discharges , 1989 .

[3]  B. Drévillon,et al.  Ion bombardment effect on the growth of a-Si:H films deposited from a pure silane plasma , 1983 .

[4]  J. Perrin,et al.  Possible routes for cluster growth and particle formation in RF silane discharges , 1994 .

[5]  J. Perrin,et al.  Growth of hydrogenated amorphous silicon due to controlled ion bombardment from a pure silane plasma , 1983 .

[6]  H. Matsumura High‐quality amorphous silicon germanium produced by catalytic chemical vapor deposition , 1987 .

[7]  J. Coburn,et al.  Frequency dependence of ion bombardment of grounded surfaces in rf argon glow discharges in a planar system , 1985 .

[8]  T. Makabe,et al.  Study of the structure in rf glow discharges in SiH4/H2 by spatiotemporal optical emission spectroscopy: Influence of negative ions , 1990 .

[9]  A. Matsuda,et al.  Photochemical vapor deposition of hydrogenated amorphous silicon films from disilane and trisilane using a low pressure mercury lamp , 1986 .

[10]  J. Perrin Modelling of the power dissipation and rovibrational heating and cooling in SiH4-H2 RF glow discharges , 1993 .

[11]  R. Rocheleau,et al.  Novel photochemical vapor deposition reactor for amorphous silicon solar cell deposition , 1987 .

[12]  K. Tachibana,et al.  On the Reaction Kinetics in a Mercury Photosensitized CVD of a-Si:H Films , 1987 .

[13]  T. Fuyuki,et al.  Deposition of high‐quality a‐Si:H by direct photodecomposition of Si2H6 using vacuum ultraviolet light , 1988 .

[14]  Enric Bertran,et al.  Ellipsometric study of a-Si:H thin films deposited by square wave modulated rf glow discharge , 1991 .

[15]  B. Meyerson,et al.  The preparation of in situ doped hydrogenated amorphous silicon by homogeneous chemical vapor deposition , 1983 .

[16]  M. Hanabusa Photoinduced deposition of thin films , 1987 .

[17]  M. Shiratani,et al.  Effects of low‐frequency modulation on rf discharge chemical vapor deposition , 1988 .

[18]  Nick Savvides,et al.  Deposition parameters and film properties of hydrogenated amorphous silicon prepared by high rate dc planar magnetron reactive sputtering , 1984 .

[19]  Masahiro Tanaka,et al.  Chemical Vapor Deposition of a-SiGe:H Films Utilizing a Microwave-Excited Plasma , 1987 .

[20]  David B. Graves,et al.  Particle thermophoresis in low pressure glow discharges , 1991 .

[21]  A. Gallagher Silane Discharge Gas and Surface Reactions , 1984 .

[22]  P. .. Bhat,et al.  High-efficiency amorphous silicon p-i-n solar cells deposited from disilane at rates up to 2 nm/s using VHF discharges , 1989 .

[23]  Arvind Shah,et al.  Microstructure, Optoelectronic Properties and Saturated Defect Density of A-SL:H Prepared in VHF-Glow Discharge Using AR and XE Dilution , 1992 .

[24]  V. Godyak,et al.  Ion Bombardment Secondaty Electron Maintenance of Steady RF Discharge , 1986, IEEE Transactions on Plasma Science.

[25]  A. Matsuda,et al.  SURFACE REACTIONS DURING THE A-SI : H GROWTH IN THE DIODE AND TRIODE GLOW-DISCHARGE REACTORS , 1991 .

[26]  D. Mataras,et al.  Spatial profiles of reactive intermediates in rf silane discharges , 1989 .

[27]  A. Howling,et al.  Negative-Ion Mass-Spectra and Particulate Formation in Radio-Frequency Silane Plasma Deposition Experiments , 1993 .

[28]  J. Perrin,et al.  Temperature dependence of the sticking and loss probabilities of silyl radicals on hydrogenated amorphous silicon , 1990 .

[29]  Arvind Shah,et al.  Influences of a high excitation frequency (70 MHz) in the glow discharge technique on the process plasma and the properties of hydrogenated amorphous silicon , 1992 .

[30]  J. Perrin,et al.  Surface reaction and recombination of the SiH3 radical on hydrogenated amorphous silicon , 1987 .

[31]  J. Perrin,et al.  Emission cross sections from fragments produced by electron impact on silane , 1982 .

[32]  G. Turban,et al.  Reaction mechanisms of the radio frequency glow discharged deposition process in silane-helium , 1979 .

[33]  Alan Gallagher,et al.  Production of high-quality amorphous silicon films by evaporative silane surface decomposition , 1988 .

[34]  J. Perrin,et al.  Sticking and recombination of the SiH3 radical on hydrogenated amorphous silicon: The catalytic effect of diborane , 1989 .

[35]  T. Shiimoto,et al.  Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200 °C , 1986 .

[36]  H. Matsumura Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon , 1989 .

[37]  J. Perrin,et al.  a-Si:H Deposition from SiH4 and Si2H6 rf-Discharges: Pressure and Temperature Dependence of Film Growth in Relation to α-γ Discharge Transition , 1988 .

[38]  B. Drévillon,et al.  Hydrogen content of amorphous silicon films deposited in a multipole plasma , 1985 .

[39]  S. Vepřek,et al.  Open questions regarding the mechanism of plasma-induced deposition of silicon , 1991 .

[40]  J. Perrin,et al.  Positive and negative ions in silane and disilane multipole discharges , 1984 .

[41]  A model of amorphous silicon deposition in DC glow discharge in silane , 1989 .

[42]  J. Perrin,et al.  Silane dissociation mechanisms and thin film formation in a low pressure multipole dc discharge , 1980 .

[43]  A. Bouchoule,et al.  Particle generation and behavior in a silane‐argon low‐pressure discharge under continuous or pulsed radio‐frequency excitation , 1991 .

[44]  A. Gallagher,et al.  Silane dissociation products in deposition discharges , 1990 .

[45]  M. Hirose,et al.  Novel effects of magnetic field on the silane glow discharge , 1980 .

[46]  J. Perrin,et al.  Dissociation cross sections of silane and disilane by electron impact , 1982 .

[47]  P. A. Longeway,et al.  Analysis of a flowing silane dc discharge in the presence of a hot surface , 1985 .

[48]  G. Turban,et al.  Ion and radical reactions in the silane glow discharge deposition of a-Si:H films , 1982 .

[49]  M. Capitelli,et al.  On the modulation of electron energy distribution function in radiofrequency SiH4, SiH4−H2 bulk plasmas , 1988 .

[50]  P. A. Longeway,et al.  Decomposition kinetics of a static direct current silane glow discharge , 1984 .

[51]  T. Robinson,et al.  Particle densities in radio-frequency discharges of silane , 1988 .

[52]  A. Matsuda,et al.  Role of Hydrogen Atoms in the Formation Process of Hydrogenated Microcrystalline Silicon , 1990 .

[53]  M. Kushner A phenomenological model for surface deposition kinetics during plasma and sputter deposition of amorphous hydrogenated silicon , 1987 .

[54]  R. Robertson,et al.  Mono‐ and disilicon radicals in silane and silane‐argon dc discharges , 1986 .

[55]  K. Kamisako,et al.  Gas Phase Reaction Kinetics in Mercury-Photosensitized Decomposition of SiH4 , 1988 .

[56]  A. Gallagher,et al.  Spatial distribution of a-Si:H film-producing radicals in silane rf glow discharges , 1990 .

[57]  A. Pointu Model of rf discharges at frequencies greater than the ionic plasma frequency , 1987 .

[58]  A. Matsuda,et al.  Hydrogenated amorphous silicon prepared by ArF and F2 excimer laser‐induced photochemical vapor deposition , 1987 .

[59]  A. Gallagher,et al.  Argon sputtering analysis of the growing surface of hydrogenated amorphous silicon films , 1988 .

[60]  T. Fuyuki,et al.  Modeling and diagnostics of silicon nitride deposition from 254‐nm Hg photosensitization of SiH4‐NH3 mixtures: Luminescence of HgNH3 excimer and laser‐induced fluorescence of NH2(Ã 2A1) , 1990 .

[61]  M. Wertheimer,et al.  Advances in basic and applied aspects of microwave plasma polymerization , 1984 .

[62]  Inan Chen,et al.  Mass transfer analyses of the plasma deposition process , 1983 .

[63]  Kevin K. H. Chan,et al.  Deposition of amorphous silicon using a tubular reactor with concentric‐electrode confinement , 1992 .

[64]  J. Perrin,et al.  Spatially resolved optical emission and electrical properties of SiH4 RF discharges at 13.56 MHz in a symmetric parallel-plate configuration , 1991 .

[65]  N. Wyrsch,et al.  High-rate deposition of amorphous hydrogenated silicon: effect of plasma excitation frequency , 1987 .

[66]  A. Howling,et al.  Powder Dynamics in Very High-Frequency Silane Plasmas , 1992 .

[67]  J. Perrin Plasma and surface reactions during a-Si:H film growth , 1991 .

[68]  Gallagher,et al.  Causes of SiH4 dissociation in silane dc discharges. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[69]  M. Shiratani,et al.  Powder‐free plasma chemical vapor deposition of hydrogenated amorphous silicon with high rf power density using modulated rf discharge , 1990 .

[70]  M. Kushner,et al.  Effect of hydrogen content on the light induced defect generation in direct current magnetron reactively sputtered hydrogenated amorphous silicon thin films , 1990 .

[71]  M. Ueda,et al.  High‐rate deposition of amorphous hydrogenated silicon from a SiH4 plasma , 1984 .

[72]  N. Hata,et al.  Silane plasma and surface processes in amorphous silicon deposition , 1985 .

[73]  M. Kushner,et al.  Simulation of the bulk and surface properties of amorphous hydrogenated silicon deposited from silane plasmas , 1989 .

[74]  M. Ueda,et al.  New mode of plasma deposition in a capacitively coupled reactor , 1984 .

[75]  Chuang‐Chuang Tsai,et al.  Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon , 1986 .

[76]  V. Godyak,et al.  In situ simultaneous radio frequency discharge power measurements , 1990 .

[77]  P. Cabarrocas Detailed Study of Ion Bombardment in Rf Glow Discharge Deposition Systems: The Role of Helium Dilution , 1989 .

[78]  J. Perrin,et al.  Ion‐induced secondary electron emission in SiH4 glow discharge, and temperature dependence of hydrogenated amorphous silicon deposition rate , 1993 .

[79]  Mark J. Kushner,et al.  Monte Carlo‐fluid hybrid model of the accumulation of dust particles at sheath edges in radio‐frequency discharges , 1991 .

[80]  H. Shirai,et al.  Role of Atomic Hydrogen During Growth of Hydrogenated Amorphous Silicon in the “Chemical Annealing” , 1991 .

[81]  F. Pool,et al.  Electron cyclotron resonance deposition of a-Si:H and a-C:H films , 1989 .

[82]  A. Bouchoule,et al.  Measurements of particle size kinetics from nanometer to micrometer scale in a low‐pressure argon‐silane radio‐frequency discharge , 1992 .

[83]  A. Matsuda,et al.  SiH3 Radical Density in Pulsed Silane Plasma , 1990 .

[84]  S. Wagner,et al.  Optoelectronic properties of hydrogenated amorphous silicon films deposited under negative substrate bias , 1991 .

[85]  Boeuf,et al.  Transition between different regimes of rf glow discharges. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[86]  Toshio Hayashi,et al.  Low-Temperature Silicon Epitaxial Growth by Photochemical Vapor Deposition Using Vacuum Ultraviolet Light , 1987 .

[87]  Mark J. Kushner,et al.  A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon , 1988 .

[88]  M. Vaněček,et al.  New way for high-rate a-Si deposition , 1987 .

[89]  B. A. Scott,et al.  Low defect density amorphous hydrogenated silicon prepared by homogeneous chemical vapor deposition , 1982 .

[90]  J. Schmitt Amorphous silicon deposition: Industrial and technical challenges☆ , 1989 .

[91]  J. P. M. Schmitt,et al.  A fully automated hot-wall multiplasma-monochamber reactor for thin film deposition , 1991 .

[92]  J. Schmitt Fundamental mechanisms in silane plasma decompositions and amorphous silicon deposition , 1983 .

[93]  M. Musci,et al.  Hydrogenated amorphous silicon growth by CO2 laser photodissociation of silane , 1982 .

[94]  A. Gallagher,et al.  Surface reaction probability of film‐producing radicals in silane glow discharges , 1990 .

[95]  H. Chatham,et al.  High Deposition Rate P-I-N Solar Cells Prepared from Disilane Using VHF Discharges , 1989 .

[96]  A. Matsuda,et al.  Investigation of the growth kinetics of glow-discharge hydrogenated amorphous silicon using a radical separation technique , 1986 .

[97]  G. Lucovsky,et al.  Properties of the SiH bond-stretching absorption band in a-Si:H grown by remote plasma enhanced CVD (RPECVD) , 1987 .

[98]  A. Lichtenberg,et al.  Self‐consistent stochastic electron heating in radio frequency discharges , 1988 .

[99]  J. Perrin,et al.  Effect of Ion Bombardment on the Growth and Properties of Hydrogenated Amorphous Silicon-Germanium Alloys , 1989 .

[100]  H. Sakai,et al.  Hydrogenated Amorphous Silicon Germanium Alloys Prepared by Triode rf Glow Discharge , 1986 .

[101]  M. Kushner Mechanisms for Power Deposition in Ar/SiH4 Capacitively Coupled RF Discharges , 1986, IEEE Transactions on Plasma Science.

[102]  Michel Meunier,et al.  Laser‐induced chemical vapor deposition of hydrogenated amorphous silicon. I. Gas‐phase process model , 1987 .

[103]  W. Breiland,et al.  Laser studies of the reactivity of SiH with the surface of a depositing film , 1989 .

[104]  J. Perrin,et al.  High resolution absorption and emission spectroscopy of a silane plasma in the 1800–2300 cm−1 range , 1982 .

[105]  G. Lucovsky,et al.  Deposition of silicon dioxide and silicon nitride by remote plasma enhanced chemical vapor deposition , 1986 .

[106]  A. Howling,et al.  Negative hydrogenated silicon ion clusters as particle precursors in RF silane plasma deposition experiments , 1993 .

[107]  B. Drévillon,et al.  In situ study of the growth of hydrogenated amorphous silicon by infrared ellipsometry , 1991 .

[108]  A. Gallagher Amorphous silicon deposition rates in diode and triode discharges , 1986 .

[109]  S. Ishihara,et al.  Low Temperature Preparation of Hydrogenated Amorphous Silicon by Microwave Electron-Cyclotron-Resonance Plasma CVD , 1987 .

[110]  Joseph T. Verdeyen,et al.  Modulated discharges: Effect on plasma parameters and deposition , 1990 .

[111]  Sanden van de Mcm,et al.  Emission spectroscopy on a supersonically expanding argon/silane plasma , 1992 .

[112]  M. Capitelli,et al.  Electron kinetics in a collision-dominated SiH4 rf plasma including self-consistent rf field strength calculation , 1990 .

[113]  J. Boeuf,et al.  Transition from a capacitive to a resistive regime in a silane radio frequency discharge and its possible relation to powder formation , 1992 .

[114]  R. Coalson,et al.  Time-of-flight spectra of a particle scattering from a collinear harmonic lattice at finite temperature , 1990 .