Effective Implementation of Linear Discriminant Analysis for Face Recognition and Verification

The algorithmic techniques for the implementation of the Linear Discriminant Analysis (LDA) play an important role when the LDA is applied to the high dimensional pattern recognition problem such as face recognition or verification. The LDA implementation in the context of face recognition and verification is investigated in this paper. Three main algorithmic techniques: matrix transformation, the Cholesky factorisation and QR algorithm, the Kronecker canonical form and QZ algorithm are proposed and tested on four publicly available face databases(M2VTS, YALE, XM2FDB, HARVARD)1. Extensive experimental results support the conclusion that the implementation based on the Kronecker canonical form and the QZ algorithm accomplishes the best performance in all experiments.

[1]  J. H. Wilkinson,et al.  Handbook for Automatic Computation. Vol II, Linear Algebra , 1973 .

[2]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[3]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[4]  James Hardy Wilkinson,et al.  Kronecker''s canonical form and the QZ algorithm , 1979 .

[5]  J. H. Wilkinson,et al.  Handbook for Automatic Computation: Linear Algebra (Grundlehren Der Mathematischen Wissenschaften, Vol 186) , 1986 .

[6]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[7]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[8]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[9]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[10]  Rama Chellappa,et al.  Face recognition using discriminant eigenvectors , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[11]  Chengjun Liu,et al.  Face Recognition Using Evolutionary Pursuit , 1998, ECCV.

[12]  J. H. Wilkinson,et al.  Symmetric decomposition of a positive definite matrix , 1965 .

[13]  W. Greub Linear Algebra , 1981 .

[14]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[17]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[18]  Alston S. Householder,et al.  Handbook for Automatic Computation , 1960, Comput. J..

[19]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.