A computational model for nanosecond pulse laser-plasma interactions

Abstract A multi-physics numerical model for laser-induced optical breakdown and laser-plasma interaction in a non-equilibrium gas is presented, accounting for: production of priming electrons via multi-photon ionization, energy absorption, cascade ionization, induced hydrodynamic response, and shock formation and propagation. The gas is governed by the Navier-Stokes equations, with non-equilibrium effects taken into account by means of a two-temperature model. The space-time dependence of the laser beam is modeled with a flux-tube formulation for the Radiative Transfer Equation. The flow governing equations are discretized in space using a second-order finite volume method. The semi-discrete equations are marched in time using an implicit-explicit (IMEX) dual time-stepping strategy, where diffusion and chemistry are solved implicitly, whereas convection is explicit. Application to a 20 ns long 50 mJ pulse laser-induced breakdown in quiescent O2 shows the advantages of this temporal discretization during and just after the laser pulse, while a less-expensive symmetric Strang splitting (for implicit chemistry) is sufficient for the post-breakdown gas dynamics after ≃ 0.1textmu s. The integrated model is shown to reproduce key features of corresponding experiments.

[1]  R. S. Devoto TRANSPORT COEFFICIENTS OF PARTIALLY IONIZED ARGON. , 1967 .

[2]  Yukikazu Itikawa,et al.  Cross Sections for Electron Collisions with Oxygen Molecules , 2009 .

[3]  Liangjie Wei,et al.  Experimental and modeling study on auto-ignition characteristics of methane/hydrogen blends under engine relevant pressure , 2012 .

[4]  A. L’Huillier,et al.  Multiphoton ionization versus dissociation of diatomic molecules irradiated by an intense 40 ps laser pulse , 1984 .

[5]  R. Miles,et al.  Mathematical Model of Dual-Pulse Laser Ignition , 2017 .

[6]  Roger C. Millikan,et al.  Systematics of Vibrational Relaxation , 1963 .

[7]  D. Knight,et al.  Laser Energy Deposition in Quiescent Air , 2003 .

[8]  F. J. Smith,et al.  Transport Coefficients of Ionized Gases , 1967 .

[9]  R. S. Devoto Transport coefficients of ionized argon , 1973 .

[10]  B. Edĺen Accurate Semi-Empirical Formulae for the Energy Structure of Li I-like Spectra , 1979 .

[11]  J. Freund,et al.  Laser-induced non-equilibrium plasma kernel dynamics , 2019, Journal of Physics D: Applied Physics.

[12]  J. W. Gallagher,et al.  Tables of spectra of hydrogen, carbon, nitrogen, and oxygen atoms and ions , 1993 .

[13]  E. Kustova,et al.  Non-Equilibrium Reacting Gas Flows , 2009 .

[14]  D. Marcuse Light transmission optics , 1972 .

[15]  C. Park,et al.  Nonequilibrium Hypersonic Aerothermodynamics , 1989 .

[16]  R. R. Johnston Free-free radiative transitions—A survey of theoretical results , 1967 .

[17]  V. Giovangigli Multicomponent flow modeling , 1999 .

[18]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[19]  Norio Tsuda,et al.  Mechanism of forward development of a plasma produced by an excimer laser in high-pressure argon gases , 2000 .

[20]  K. Thompson Time-dependent boundary conditions for hyperbolic systems, II , 1990 .

[21]  T. Magin,et al.  Transport algorithms for partially ionized and unmagnetized plasmas , 2004 .

[22]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[23]  M. Liou A Sequel to AUSM , 1996 .

[24]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[25]  R. S. Devoto Transport Properties of Ionized Monatomic Gases , 1966 .

[26]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[27]  C. Demichelis Laser induced gas breakdown: A bibliographical review , 1969 .

[28]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[29]  G. Candler,et al.  Data-Parallel Line Relaxation Method for the Navier -Stokes Equations , 1998 .

[30]  I. Dors,et al.  Computational fluid-dynamic model of laser-induced breakdown in air. , 2003, Applied optics.

[31]  Jonathan B. Freund,et al.  Proposed Inflow/Outflow Boundary Condition for Direct Computation of Aerodynamic Sound , 1997 .

[32]  P. Gnoffo,et al.  Multi-Component Diffusion With Application to Computational Aerothermodynamics , 1998 .

[33]  A. Jameson,et al.  Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations , 1988 .

[34]  Leon J. Radziemski,et al.  Lasers-Induced Plasmas and Applications , 1989 .

[35]  C. D. Sijoy,et al.  Numerical investigation of nanosecond laser induced plasma and shock wave dynamics from air using 2D hydrodynamic code , 2017 .

[36]  C. G. Morgan Laser-induced breakdown of gases , 1975 .

[37]  A. Gold,et al.  Multiphoton Ionization of Hydrogen and Rare-Gas Atoms , 1966 .

[38]  A. Yalin,et al.  Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition , 2017, Scientific Reports.

[39]  N. Mansour,et al.  A Reduced-order NLTE Kinetic Model for Radiating Plasmas of Outer Envelopes of Stellar Atmospheres , 2016, 1612.04438.

[40]  Alan C. Hindmarsh,et al.  Description and use of LSODE, the Livermore Solver for Ordinary Differential Equations , 1993 .

[41]  J. Verwer Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .

[42]  J. Oxenius Kinetic Theory of Particles and Photons , 1986 .

[43]  Antony Jameson,et al.  Lower-upper implicit schemes with multiple grids for the Euler equations , 1987 .

[44]  F. J. Smith,et al.  Recommended Data on the Electron Impact Ionization of Atoms and Ions: Fluorine to Nickel , 1988 .

[45]  J. Ferziger,et al.  Mathematical theory of transport processes in gases , 1972 .

[46]  A. Zheltikov,et al.  Tailoring the air plasma with a double laser pulse , 2011 .

[47]  A. Giacomo,et al.  Laser-induced plasma expansion: theoretical and experimental aspects , 2004 .

[48]  T. Pulliam Time accuracy and the use of implicit methods. [in CFD , 1993 .

[49]  P. Maker,et al.  Optical Third Harmonic Generation , 1964 .

[50]  O. De Pascale,et al.  Experimental and theoretical investigation of laser-induced plasma of a titanium target. , 2003, Applied optics.

[51]  M. Dell’Aglio,et al.  Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water , 2005 .

[52]  H. Petschek,et al.  Approach to equilibrium lonization behind strong shock waves in argon , 1957 .

[53]  M. Capitelli,et al.  Modelling of LIBS plasma expansion , 2001 .

[54]  Elisabetta Tognoni,et al.  Thermodynamic equilibrium states in laser-induced plasmas: From the general case to laser-induced breakdown spectroscopy plasmas , 2013 .

[55]  Fernando Pirani,et al.  Transport Properties of High-Temperature Jupiter-Atmosphere Components , 2010 .

[56]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[57]  G. Elliott,et al.  Temporal and Spatial Evolution of a Laser Spark in Air , 2005 .

[58]  Y. Zel’dovich,et al.  Gas Dynamics. (Book Reviews: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1) , 1970 .

[59]  N. Ohnishi,et al.  Computational study of shock wave control by pulse energy deposition , 2012 .

[60]  S. Geltman Free-free radiation in electron-neutral atom collisions , 1973 .

[61]  Norio Tsuda,et al.  Observation of forward breakdown mechanism in high-pressure argon plasma produced by irradiation by an excimer laser , 1997 .

[62]  K. Mahesh,et al.  Numerical simulation of the fluid dynamic effects of laser energy deposition in air , 2008, Journal of Fluid Mechanics.

[63]  A. Giacomo,et al.  Kinetic processes for laser induced plasma diagnostic: A collisional-radiative model approach , 2010 .

[64]  Graham V. Candler,et al.  Numerical Studies of Laser-Induced Energy Deposition for Supersonic Flow Control , 2003 .

[65]  I. Nompelis Computational study of hypersonic double-cone experiments for code validation , 2004 .

[66]  R. Mahamud,et al.  Dual-pulse laser ignition model , 2018, Physics of Fluids.

[67]  L. Keldysh,et al.  IONIZATION IN THE FIELD OF A STRONG ELECTROMAGNETIC WAVE , 1964 .

[68]  C. Manus,et al.  MULTIPHOTON IONIZATION OF ATOMS , 1975 .

[69]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[70]  J. Freund,et al.  Influence of mode-beating pulse on laser-induced plasma , 2018 .

[71]  Jan G. Verwer,et al.  An Implicit-Explicit Runge-Kutta-Chebyshev Scheme for Diffusion-Reaction Equations , 2004, SIAM J. Sci. Comput..

[72]  Investigation of a gas breakdown process in a laser-plasma experiment , 2004 .

[73]  G. Ostrovskaya,et al.  Laser spark in gases , 1974 .

[74]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[75]  Andrea Lani,et al.  Modeling of non-equilibrium phenomena in expanding flows by means of a collisional-radiative model , 2013 .

[76]  Andrea Lani,et al.  Collisional radiative coarse-grain model for ionization in air , 2013 .

[77]  C. F. Curtiss,et al.  Transport Properties of Multicomponent Gas Mixtures , 1949 .

[78]  Graham V. Candler,et al.  Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium , 1991 .

[79]  Richard A. Thompson,et al.  Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30000 K , 1991 .

[80]  Olivier Chazot,et al.  Electronic Excitation of Atoms and Molecules for the FIRE II Flight Experiment , 2011 .

[81]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[82]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[83]  Harry Partridge,et al.  Chemical-kinetic parameters of hyperbolic Earth entry , 2000 .

[84]  A. L’Huillier,et al.  Multiphoton ionization of many‐electron atoms , 1987 .

[85]  Jiri Blazek,et al.  Computational Fluid Dynamics: Principles and Applications , 2001 .

[86]  R L Kelly,et al.  Atomic and ionic spectrum lines below 2000 angstroms : hydrogen through krypton , 1987 .

[87]  Peter A. Gnoffo,et al.  Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium , 1989 .

[88]  T. Magin,et al.  Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[90]  Olivier Chazot,et al.  Fire II Flight Experiment Analysis by Means of a Collisional-Radiative Model , 2009 .

[91]  Yukikazu Itikawa,et al.  Cross Sections for Electron Collisions with Nitrogen Molecules , 2006 .

[92]  Campbell,et al.  Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser. , 1988, Physical review. A, General physics.