Mechanical and optical properties of silver-halide infrared transmitting fibers

Abstract This article presents a review of the optical and mechanical properties of infrared transmitting fibers extruded from single crystals of silver-halides at the Applied Physics Group in Tel-Aviv University during the last decade. The optical properties of AgclxBr1-x crystals and fibers include the spectral transmission window, laser power transmission, the change of the power distribution traveling along the fiber, and the laser-induced breakdown. The mechanical properties include the investigation of the ultimate tensile strength (UTS), hardness, and the elastic strain limits of these fibers and their composition dependence. The mechanical properties that involve single and multiple bending of fibers in the plastic and the elastic strain limits are also described.

[1]  Abraham Katzir,et al.  Remote monitoring of ammonia using a CO2 laser and infrared fibers , 1985 .

[2]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .

[3]  Abraham Katzir,et al.  Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers , 1988 .

[5]  Abraham Katzir,et al.  Properties of silver halide core-clad fibers and the use of fiber bundles for thermal imaging , 1992, Other Conferences.

[6]  N. Barkay,et al.  Transmission of infrared laser radiation through silver-halide optical fibers during repeated plastic deformation , 1993 .

[7]  R. Englman,et al.  Optical phonons of small crystals , 1970 .

[8]  A. Katzir,et al.  Scattering effects in crystalline infrared fibers , 1988 .

[9]  F. Moser,et al.  Optical Absorption of Pure Silver Halides , 1956 .

[10]  Shiro Sakuragi Polycrystalline KRS-5 Infrared Fibers For Power Transmission , 1982, Photonics West - Lasers and Applications in Science and Engineering.

[11]  M. W. Moore,et al.  OH absorption in the low loss window of ZBLAN(P) glass fibre , 1993 .

[12]  I. Ursu,et al.  Surgical CO2 Laser Units With Specialized Beam-Delivery Systems , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[13]  N. Croitoru,et al.  Plastic hollow fibers as a selective infrared radiation transmitting medium , 1992 .

[14]  J. T. Krause,et al.  Strength and fatigue of silica optical fibers , 1989 .

[15]  Abraham Katzir,et al.  Use of infrared fibers for low‐temperature radiometric measurements , 1986 .

[16]  A. Katzir,et al.  High-cycle fatigue of silver halide infrared fibers. , 1994, Applied optics.

[17]  M. Miyagi,et al.  Optical and mechanical properties of infrared fibers , 1988 .

[18]  Vjacheslav G. Artioushenko Infrared crystalline fibers , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[19]  S. H. Wemple,et al.  ZnCl2 glass: A potential ultralow‐loss optical fiber material , 1978 .

[20]  James A. Harrington,et al.  Infrared Fiber Early Warning Receiver , 1982, Photonics West - Lasers and Applications in Science and Engineering.

[21]  Abraham Katzir,et al.  Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions , 1986 .

[22]  A. Katzir,et al.  Silver halide optical fibers for medical applications , 1987 .

[23]  Toshio Katsuyama,et al.  Infrared optical fibers , 1989 .

[24]  A. Katzir,et al.  CO2 laser power transmission and laser induced breakdown in AgClxBr1-x crystals, polycrystals, and fibers , 1992 .

[25]  J. Harrington,et al.  Hollow glass waveguides for broadband infrared transmission. , 1994, Optics letters.

[26]  N. Barkay,et al.  Optical And Mechanical Properties Of Silver Halide Fibers , 1987, Other Conferences.

[27]  A. Katzir,et al.  Elasticity of mixed silver‐halide polycrystalline optical fibers , 1993 .

[28]  Abraham Katzir,et al.  Properties of silver halide core-clad fibers and the use of fiber bundle for thermal imaging , 1991 .

[29]  Tomoharu Yamada,et al.  Yield Strength and Dislocation Mobility of KCl–KBr Solid Solution Single Crystals , 1977 .

[30]  J A Harrington,et al.  Inverse-square wavelength dependence of attenuation in infrared polycrystalline fibers. , 1983, Optics letters.

[31]  Abraham Katzir,et al.  Silver halide fiber optic radiometry for temperature monitoring and control of tissues heated by microwave , 1993 .

[32]  A. Katzir Optical fibers in medicine. , 1989, Scientific American.

[33]  Abraham Katzir,et al.  Mechanical properties of mixed silver‐halide crystals and polycrystalline optical fibers , 1988 .

[34]  L. M. Hobrock,et al.  Polycrystalline fiber optical waveguides for infrared transmission , 1978 .

[35]  Abraham Katzir,et al.  Absorption edges of mixed silver‐halide crystals and polycrystalline optical fibers , 1989 .

[36]  A Katzir,et al.  Silver halide fiber optic radiometric temperature measurement and control of CO2 laser‐irradiated tissues and application to tissue welding , 1994, Lasers in surgery and medicine.

[37]  Chai Yeh,et al.  Handbook of Fiber Optics: Theory and Applications , 1990 .

[38]  A Katzir,et al.  Evanescent-wave infrared spectroscopy of solid materials using deformable silver-halide optical fibers. , 1993, Applied optics.

[39]  Abraham Katzir,et al.  Core-clad silver halide fibers for CO2 laser power transmission , 1991, Photonics West - Lasers and Applications in Science and Engineering.

[40]  Abraham Katzir,et al.  Fiber‐optic‐based evanescent field chemical sensor using tunable diode lasers for the midinfrared spectral region , 1989 .

[41]  Abraham Katzir,et al.  Lasers and optical fibers in medicine , 1993 .