Brownian dynamics simulations of dilute polystyrene solutions

Brownian dynamics simulations of a bead-spring chain are used to predict the shear and extensional flow properties of dilute polystyrene “Boger fluids” in the filament-stretching device. Using an accurate representation of the inverse Langevin function for the elastic “spring” force of a freely jointed chain, and parameter values extracted from Zimm molecular theory combined with the molecular properties of the polystyrene solutions, quantitatively accurate predictions of the steady-state shear viscosity and first normal stress difference are obtained. The growth of the uniaxial extensional viscosity after startup of steady extension is also reasonably accurately predicted for solutions of 1.95 and 3.9 million molecular weight polystyrene, but for higher polystyrene molecular weights there is a growing overprediction of the high-strain plateau viscosity and a growing lag in the predicted stress growth relative to the measured one. Introduction of “deformation-dependent drag” into the simulations only wors...

[1]  Rahul K Gupta,et al.  Extensional viscosity of dilute polystyrene solutions: Effect of concentration and molecular weight , 2000 .

[2]  T. Sridhar,et al.  Probing the dynamics of polymer solutions in extensional flow using step strain rate experiments , 1999 .

[3]  T. Sridhar,et al.  A filament stretching device for measurement of extensional viscosity , 1993 .

[4]  E. Hinch,et al.  Do we understand the physics in the constitutive equation , 1988 .

[5]  Conformational changes of macromolecules in transient elongational flow , 1980 .

[6]  A. Gast,et al.  Dynamic simulation of freely draining flexible polymers in steady linear flows , 1997, Journal of Fluid Mechanics.

[7]  A. Cohen,et al.  A Padé approximant to the inverse Langevin function , 1991 .

[8]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[9]  D E Smith,et al.  Single polymer dynamics in an elongational flow. , 1997, Science.

[10]  G. Batchelor,et al.  Slender-body theory for particles of arbitrary cross-section in Stokes flow , 1970, Journal of Fluid Mechanics.

[11]  L. G. Leal,et al.  Flow birefringence of dilute polymer solutions in two-dimensional flows , 1980 .

[12]  Ronald G. Larson,et al.  Hydrodynamics of a DNA molecule in a flow field , 1997 .

[13]  D. V. Boger A highly elastic constant-viscosity fluid , 1977 .

[14]  Gareth H. McKinley,et al.  Relaxation of dilute polymer solutions following extensional flow 1 Dedicated to the memory of Profe , 1998 .

[15]  H. Rath,et al.  Measurement of extensional viscosity by stretching large liquid bridges in microgravity , 1994 .

[16]  Michael J. Solomon,et al.  The transient extensional behavior of polystyrene‐based Boger fluids of varying solvent quality and molecular weight , 1996 .

[17]  H. R. Warner,et al.  Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells , 1972 .

[18]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[19]  G. Fraenkel Visco‐Elastic Effect in Solutions of Simple Particles , 1952 .

[20]  M. E. Ryan,et al.  Model viscoelastic liquids , 1983 .

[21]  David C. Ables,et al.  The role of end-effects on measurements of extensional viscosity in filament stretching rheometers , 1996 .

[22]  G. McKinley,et al.  Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow , 1996 .

[23]  Tony W. Liu Flexible polymer chain dynamics and rheological properties in steady flows , 1989 .

[24]  A. Keller,et al.  The extensibility of macromolecules in solution; A new focus for macromolecular science , 1985 .

[25]  Ma Martien Hulsen,et al.  On the modelling of a PIB/PB Boger fluid in extensional flow , 1999 .

[26]  E. Hinch Uncoiling a polymer molecule in a strong extensional flow , 1994 .

[27]  D. Acierno,et al.  Dilute solution rheology of flexible macromolecules (bead–rod model) , 1974 .

[28]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[29]  Patrick S. Doyle,et al.  Dynamic simulation of freely-draining, flexible bead-rod chains: Start-up of extensional and shear flow1Dedicated to the memory of Professor Gianni Astarita1 , 1998 .

[30]  P. Doyle,et al.  Dynamic simulation of freely-draining, flexible bead-rod chains : Start-up of extensional and shear flow , 2000 .

[31]  Paul Grassia,et al.  Computer simulations of polymer chain relaxation via Brownian motion , 1996, Journal of Fluid Mechanics.

[32]  R. Gupta,et al.  Measurement of extensional viscosity of polymer solutions , 1991 .

[33]  R. Larson,et al.  A transition occurring in ideal elastic liquids during shear flow , 1988 .

[34]  D. F. James,et al.  Molecular conformation during steady‐state measurements of extensional viscosity , 1995 .

[35]  P. Gennes Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients , 1974 .

[36]  R. Tanner,et al.  Erratum: Stresses in dilute solutions of bead‐nonlinear‐spring macromolecules. I. Steady potential and plane flows , 1971 .

[37]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[38]  G. Ryskin Calculation of the effect of polymer additive in a converging flow , 1987, Journal of Fluid Mechanics.

[39]  R. Larson,et al.  Brownian dynamics simulations of a DNA molecule in an extensional flow field , 1999 .

[40]  S. Muller,et al.  The effects of gap width and dilute solution properties on the viscoelastic Taylor-Couette instability , 1992, Journal of Fluid Mechanics.

[41]  Douglas E. Smith,et al.  Response of flexible polymers to a sudden elongational flow , 1998, Science.

[42]  A. Delgado,et al.  Stretching behaviour of large polymeric and Newtonian liquid bridges in plateau simulation , 1992 .