Artefact reduction for cell migration visualization using spectral domain optical coherence tomography

Visualization of cell migration during chemotaxis using spectral domain optical coherence tomography (OCT) requires non-standard processing techniques. Stripe artefacts and camera noise floor present in OCT data prevent detailed computer-assisted reconstruction and quantification of cell locomotion. Furthermore, imaging artefacts lead to unreliable results in automated texture based cell analysis. Here we characterize three pronounced artefacts that become visible when imaging sample structures with high dynamic range, e.g. cultured cells: (i) time-varying fixed-pattern noise; (ii) stripe artefacts generated by background estimation using tomogram averaging; (iii) image modulations due to spectral shaping. We evaluate techniques to minimize the above mentioned artefacts using an 800 nm optical coherence microscope. Effect of artefact reduction is shown exemplarily on two cell cultures, i.e. Dictyostelium on nitrocellulose substrate, and retinal ganglion cells (RGC-5) cultured on a glass coverslip. Retinal imaging also profits from the proposed processing techniques.

[1]  Joseph A Izatt,et al.  Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy. , 2007, Optics express.

[2]  Stephen A Boppart,et al.  Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images. , 2004, Journal of biomedical optics.

[3]  Boris Hermann,et al.  Wide-field optical coherence tomography of the choroid in vivo. , 2008, Investigative ophthalmology & visual science.

[4]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[5]  T. Yorio,et al.  Characterization of a transformed rat retinal ganglion cell line. , 2001, Brain research. Molecular brain research.

[6]  T. Yatagai,et al.  In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. , 2007, Optics express.

[7]  E. Rametsteiner,et al.  Austria , 1980, The Lancet.

[8]  Tejal A Desai,et al.  Imaging cellular responses to mechanical stimuli within three‐dimensional tissue constructs , 2007, Microscopy research and technique.

[9]  S. A. Boppart,et al.  Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy , 2005, physics/0512161.

[10]  Tejal A Desai,et al.  Optical coherence tomography of cell dynamics in three-dimensional tissue models. , 2006, Optics express.

[11]  K Grieve,et al.  Three-dimensional cellular-level imaging using full-field optical coherence tomography. , 2004, Physics in medicine and biology.

[12]  Eric Clarkson,et al.  Effect of source spectral shape on task-based assessment of detection and resolution in optical coherence tomography. , 2005, Applied optics.

[13]  W. Drexler,et al.  Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. , 2009, Optics express.

[14]  Stephen A. Boppart,et al.  Interferometric Synthetic Aperture Microscopy , 2007, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[15]  Michael D. Duncan,et al.  Signal Processing for Improving Field Cross-correlation Function in Optical Coherence Tomography , 1998 .

[16]  J. D. de Boer,et al.  Spectral-domain optical coherence phase and multiphoton microscopy. , 2007, Optics letters.

[17]  Claudio Vinegoni,et al.  Spectroscopic spectral-domain optical coherence microscopy. , 2006, Optics letters.

[18]  Daniel L Marks,et al.  Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media. , 2003, Applied optics.

[19]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[20]  Audrey K. Ellerbee,et al.  Spectral-domain phase microscopy. , 2004, Optics Letters.

[21]  Angelika Unterhuber,et al.  Three‐ and four‐dimensional visualization of cell migration using optical coherence tomography , 2009, Journal of biophotonics.

[22]  J. Nelson,et al.  Stable carrier generation and phase-resolved digital data processing in optical coherence tomography. , 2001, Applied optics.

[23]  Andrew G. Glen,et al.  APPL , 2001 .

[24]  A. Fercher,et al.  Submicrometer axial resolution optical coherence tomography. , 2002, Optics letters.

[25]  J G Fujimoto,et al.  High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. , 2003, Optics letters.

[26]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[27]  P. Bello Characterization of Randomly Time-Variant Linear Channels , 1963 .

[28]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[29]  Peter D Woolliams,et al.  Spatially deconvolved optical coherence tomography. , 2010, Applied optics.

[30]  Maciej Wojtkowski,et al.  Scanning protocols dedicated to smart velocity ranging in spectral OCT. , 2009, Optics express.

[31]  Ruikang K. Wang,et al.  A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography , 2006, Physics in medicine and biology.

[32]  Daniel L Marks,et al.  High-speed processing architecture for spectral-domain optical coherence microscopy. , 2008, Journal of biomedical optics.

[33]  Joseph A Izatt,et al.  Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells. , 2007, Journal of biomedical optics.

[34]  Maciej Wojtkowski,et al.  Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source , 2005 .

[35]  Renu Tripathi,et al.  Spectral shaping for non-Gaussian source spectra in optical coherence tomography. , 2002, Optics letters.

[36]  W. Drexler,et al.  Dispersion encoded full range frequency domain optical coherence tomography. , 2009, Optics express.

[37]  R. Lathe Phd by thesis , 1988, Nature.

[38]  Jannick P Rolland,et al.  Spectral shaping to improve the point spread function in optical coherence tomography. , 2003, Optics letters.