Pseudo-gradient and Lagrangian boundary control system formulation of electromagnetic fields

This paper describes an electromagnetic field analogue of the classical Brayton-Moser formulation. It is shown that Maxwell's curl equations constitute a pseudo-gradient system with respect to a single electromagnetic mixed-potential functional and a metric defined by the constitutive relations of the fields. Besides its use for the generation of power-based Lyapunov functionals for stability analysis and Poynting-like flow balances, the electromagnetic mixed-potential formulation suggests a family of alternative variational principles. This yields a novel Lagrangian boundary control system formulation admitting nonzero energy flow through the boundary. The corresponding symplectic Hamiltonian system is still associated with the total electromagnetic field energy.

[1]  Variational formulation of time-dependent electromagnetic problems , 1982 .

[2]  Robert K. Brayton,et al.  A stability theory for nonlinear mixed initial boundary value problems , 1964 .

[3]  Jacquelien M. A. Scherpen,et al.  Power shaping: a new paradigm for stabilization of nonlinear RLC circuits , 2003, IEEE Trans. Autom. Control..

[4]  Dimitri Jeltsema,et al.  Modeling and control of nonlinear networks : A power-based perspective , 2005 .

[5]  P. Hammond Energy Methods in Electromagnetism , 1987 .

[6]  P. Bracken Determination of the Electromagnetic Lagrangian from a System of Poisson Brackets , 2006, math-ph/0607068.

[7]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[8]  Frédéric Zolla,et al.  On the definition of energy in general electromagnetic media , 2006 .

[9]  A. Fordy APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .

[10]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[11]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[12]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[13]  N. Georgieva,et al.  Potential formalisms in electromagnetic-field analysis , 2003 .

[14]  Romeo Ortega,et al.  On passivity and power-balance inequalities of nonlinear RLC circuits , 2003 .

[15]  W. Mathis,et al.  A Hamiltonian formulation for complete nonlinear RLC-networks , 1997 .

[16]  J. K. Moser Bistable Systems of Differential Equations with Applications to Tunnel Diode Circuits , 1961, IBM J. Res. Dev..

[17]  J. K. Moser,et al.  A theory of nonlinear networks. I , 1964 .

[18]  W. Millar CXVI. Some general theorems for non-linear systems possessing resistance , 1951 .

[19]  R. Abraham,et al.  Manifolds, tensor analysis, and applications: 2nd edition , 1988 .

[20]  Jacquelien M. A. Scherpen,et al.  On Brayton and Moser's missing stability theorem , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[21]  Katsumi Morishita,et al.  Unified approach to the derivation of variational expressions for electromagnetic fields , 1976 .