Phenotypic Heterogeneity of Monogenic Frontotemporal Dementia

Frontotemporal dementia (FTD) is a genetically and pathologically heterogeneous disorder characterized by personality changes, language impairment, and deficits of executive functions associated with frontal and temporal lobe degeneration. Different phenotypes have been defined on the basis of presenting clinical symptoms, i.e., the behavioral variant of FTD, the agrammatic variant of primary progressive aphasia, and the semantic variant of PPA. Some patients have an associated movement disorder, either parkinsonism, as in progressive supranuclear palsy and corticobasal syndrome, or motor neuron disease (FTD–MND). A family history of dementia is found in 40% of cases of FTD and about 10% have a clear autosomal-dominant inheritance. Genetic studies have identified several genes associated with monogenic FTD: microtubule-associated protein tau, progranulin, TAR DNA-binding protein 43, valosin-containing protein, charged multivesicular body protein 2B, fused in sarcoma, and the hexanucleotide repeat expansion in intron 1 of the chromosome 9 open reading frame 72. Patients often present with an extensive phenotypic variability, even among different members of the same kindred carrying an identical disease mutation. The objective of the present work is to review and evaluate available literature data in order to highlight recent advances in clinical, biological, and neuroimaging features of monogenic frontotemporal lobar degeneration and try to identify different mechanisms underlying the extreme phenotypic heterogeneity that characterizes this disease.

[1]  Y. Vives-Gilabert,et al.  Early Cerebellar Hypometabolism in Patients With Frontotemporal Dementia Carrying the C9orf72 Expansion , 2015, Alzheimer disease and associated disorders.

[2]  C. Jack,et al.  Brain atrophy over time in genetic and sporadic frontotemporal dementia: a study of 198 serial magnetic resonance images , 2015, European journal of neurology.

[3]  S. Cappa,et al.  Italian Frontotemporal Dementia Network (FTD Group-SINDEM): sharing clinical and diagnostic procedures in Frontotemporal Dementia in Italy , 2015, Neurological Sciences.

[4]  Daniel R. Schonhaut,et al.  A novel mutation P112H in the TARDBP gene associated with frontotemporal lobar degeneration without motor neuron disease and abundant neuritic amyloid plaques , 2015, Acta neuropathologica communications.

[5]  S. Sorbi,et al.  Csf p-tau181/tau ratio as biomarker for TDP pathology in frontotemporal dementia , 2015, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[6]  Veronica Redaelli,et al.  Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis , 2015, The Lancet Neurology.

[7]  M. Rossor,et al.  C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis , 2015, The Lancet Neurology.

[8]  S. Kusunoki,et al.  VCP gene analyses in Japanese patients with sporadic amyotrophic lateral sclerosis identify a new mutation , 2015, Neurobiology of Aging.

[9]  S. Sorbi,et al.  The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients , 2015, Acta Neuropathologica.

[10]  Charles D. Smith,et al.  A case report comparing clinical, imaging and neuropsychological assessment findings in twins discordant for the VCP p.R155C mutation , 2015, Neuromuscular Disorders.

[11]  Christopher C Rowe,et al.  Tau imaging: early progress and future directions , 2015, The Lancet Neurology.

[12]  Keith A. Johnson,et al.  Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging , 2015, Neuropathology and applied neurobiology.

[13]  J. Sheng,et al.  Association of progranulin polymorphism rs5848 with neurodegenerative diseases: a meta-analysis , 2015, Journal of Neurology.

[14]  L. Naccache,et al.  Extensive white matter involvement in patients with frontotemporal lobar degeneration: think progranulin. , 2014, JAMA neurology.

[15]  Giovanni Coppola,et al.  Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. , 2014, Brain : a journal of neurology.

[16]  L. Petrucelli,et al.  Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients , 2014, Brain Research.

[17]  P. Rabins,et al.  Hippocampal sclerosis dementia with the C9ORF72 hexanucleotide repeat expansion , 2014, Neurobiology of Aging.

[18]  Giovanni B. Frisoni,et al.  Pattern of structural and functional brain abnormalities in asymptomatic granulin mutation carriers , 2014, Alzheimer's & Dementia.

[19]  B. Dubois,et al.  Homozygous TREM2 mutation in a family with atypical frontotemporal dementia , 2014, Neurobiology of Aging.

[20]  Franco Cauda,et al.  Multimodal fMRI Resting-State Functional Connectivity in Granulin Mutations: The Case of Fronto-Parietal Dementia , 2014, PloS one.

[21]  D. Mann,et al.  Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72 , 2014, Acta neuropathologica communications.

[22]  F. Jessen,et al.  Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration , 2014, Acta Neuropathologica.

[23]  Kevin F. Bieniek,et al.  Expanded C9ORF72 hexanucleotide repeat in depressive pseudodementia. , 2014, JAMA neurology.

[24]  J. Jankovic,et al.  The role of FUS gene variants in neurodegenerative diseases , 2014, Nature Reviews Neurology.

[25]  J. Sheng,et al.  Progranulin polymorphism rs5848 is associated with increased risk of Alzheimer's disease. , 2014, Gene.

[26]  A. Altamura,et al.  C9ORF72 hexanucleotide repeat expansion as a rare cause of bipolar disorder , 2014, Bipolar disorders.

[27]  D. Irwin,et al.  C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD , 2014, Acta Neuropathologica.

[28]  D. Galimberti,et al.  The C9ORF72 hexanucleotide repeat expansion is a rare cause of schizophrenia , 2014, Neurobiology of Aging.

[29]  L. Schöls,et al.  Targeted high-throughput sequencing identifies a TARDBP mutation as a cause of early-onset FTD without motor neuron disease , 2014, Neurobiology of Aging.

[30]  Adriano Chiò,et al.  Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[31]  B. Borroni,et al.  Subcortical and Deep Cortical Atrophy in Frontotemporal Dementia due to Granulin Mutations , 2014, Dementia and Geriatric Cognitive Disorders Extra.

[32]  Colin J. Mahoney,et al.  A pathogenic progranulin mutation and C9orf72 repeat expansion in a family with frontotemporal dementia , 2014, Neuropathology and applied neurobiology.

[33]  S. Sorbi,et al.  Heterozygous TREM2 mutations in frontotemporal dementia , 2014, Neurobiology of Aging.

[34]  William T. Hu,et al.  Phosphorylated tau as a candidate biomarker for amyotrophic lateral sclerosis. , 2014, JAMA neurology.

[35]  D. Mann,et al.  C9ORF72 in Dementia with Lewy bodies , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[36]  E. Kremmer,et al.  Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis , 2014, Acta Neuropathologica.

[37]  J. Hodges,et al.  Frontotemporal dementia associated with the C9ORF72 mutation: a unique clinical profile. , 2014, JAMA neurology.

[38]  P. Deyn,et al.  Investigating the role of rare heterozygous TREM2 variants in Alzheimer's disease and frontotemporal dementia , 2014, Neurobiology of Aging.

[39]  B. Borroni,et al.  Effect of TMEM106B polymorphism on functional network connectivity in asymptomatic GRN mutation carriers. , 2014, JAMA neurology.

[40]  C. van Broeckhoven,et al.  TARDBP mutation p.Ile383Val associated with semantic dementia and complex proteinopathy , 2014, Neuropathology and applied neurobiology.

[41]  C. Broeckhoven,et al.  Dementia in 2013: Frontotemporal lobar degeneration—building on breakthroughs , 2014, Nature Reviews Neurology.

[42]  E. Hol,et al.  Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice , 2014, Neurobiology of Aging.

[43]  C. Cotman,et al.  TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions , 2014, Acta Neuropathologica.

[44]  C. Jack,et al.  The GGGGCC Repeat Expansion in C9ORF72 in a Case with Discordant Clinical and FDG-PET Findings: PET Trumps Syndrome , 2014, Neurocase.

[45]  G. Forloni,et al.  C9ORF72 hexanucleotide repeat number in frontotemporal lobar degeneration: a genotype-phenotype correlation study. , 2013, Journal of Alzheimer's disease : JAD.

[46]  R. Guerreiro,et al.  A novel compound heterozygous mutation in TREM2 found in a Turkish frontotemporal dementia-like family , 2013, Neurobiology of Aging.

[47]  Chadwick M. Hales,et al.  Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP , 2013, Neurology.

[48]  H. Kolb,et al.  [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease , 2013, Alzheimer's & Dementia.

[49]  Y. Béjot,et al.  Psychiatric Presentation of Frontotemporal Dementia Associated with Inclusion Body Myopathy due to the VCP Mutation (R155H) in a French Family , 2013, Case Reports in Neurology.

[50]  L. Petrucelli,et al.  Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood , 2013, Acta Neuropathologica.

[51]  Gene W. Yeo,et al.  Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration , 2013, Proceedings of the National Academy of Sciences.

[52]  E. Kremmer,et al.  Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins , 2013, Acta Neuropathologica.

[53]  Nipun A. Mistry,et al.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention , 2013, Neuron.

[54]  S. Lorenzl,et al.  Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations , 2013, Acta Neuropathologica.

[55]  L. Petrucelli,et al.  Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study , 2013, The Lancet Neurology.

[56]  A. Brice,et al.  TREM2 mutations are rare in a French cohort of patients with frontotemporal dementia , 2013, Neurobiology of Aging.

[57]  J. Massano,et al.  Progranulin Peripheral Levels as a Screening Tool for the Identification of Subjects with Progranulin Mutations in a Portuguese Cohort , 2013, Neurodegenerative Diseases.

[58]  A. Kertesz,et al.  Psychosis and Hallucinations in Frontotemporal Dementia with the C9ORF72 Mutation: A Detailed Clinical Cohort , 2013, Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology.

[59]  M. Filippi,et al.  Autosomal Dominant Frontotemporal Lobar Degeneration Due to the C9ORF72 Hexanucleotide Repeat Expansion: Late-Onset Psychotic Clinical Presentation , 2013, Biological Psychiatry.

[60]  Kevin F. Bieniek,et al.  Progressive amnestic dementia, hippocampal sclerosis, and mutation in C9ORF72 , 2013, Acta Neuropathologica.

[61]  C. Broeckhoven,et al.  Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum , 2013, Trends in Neurosciences.

[62]  Jason J. Corneveaux,et al.  Variants in triggering receptor expressed on myeloid cells 2 are associated with both behavioral variant frontotemporal lobar degeneration and Alzheimer's disease , 2013, Neurobiology of Aging.

[63]  B. Borroni,et al.  The Neuroimaging Signature of Frontotemporal Lobar Degeneration Associated with Granulin Mutations: An Effective Connectivity Study , 2013, The Journal of Nuclear Medicine.

[64]  Nick C Fox,et al.  Genetic analysis of inherited leukodystrophies: genotype-phenotype correlations in the CSF1R gene. , 2013, JAMA neurology.

[65]  E. Rogaeva,et al.  Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. , 2013, American journal of human genetics.

[66]  R. Mayeux,et al.  C9orf72 hexanucleotide repeat expansions in clinical Alzheimer disease. , 2013, JAMA neurology.

[67]  P. Deyn,et al.  C9orf72 G4C2 repeat expansions in Alzheimer's disease and mild cognitive impairment , 2013, Neurobiology of Aging.

[68]  Michel Goedert,et al.  Tau pathology and neurodegeneration , 2013, The Lancet Neurology.

[69]  M. Benatar,et al.  Motor neuron involvement in multisystem proteinopathy , 2013, Neurology.

[70]  B. Borroni,et al.  Dementia: A new algorithm for molecular diagnostics in FTLD , 2013, Nature Reviews Neurology.

[71]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[72]  B. Avants,et al.  White matter imaging helps dissociate tau from TDP-43 in frontotemporal lobar degeneration , 2013, Journal of Neurology, Neurosurgery & Psychiatry.

[73]  Michael Benatar,et al.  Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS , 2013, Nature.

[74]  Nick C Fox,et al.  Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.

[75]  C. van Broeckhoven,et al.  Distinct clinical characteristics of C9orf72 expansion carriers compared with GRN, MAPT, and nonmutation carriers in a Flanders-Belgian FTLD cohort. , 2013, JAMA neurology.

[76]  Ilya M. Veer,et al.  Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia , 2013, Neurology.

[77]  C. Broeckhoven,et al.  hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations , 2013, Acta Neuropathologica.

[78]  Mark Hallett,et al.  Criteria for the diagnosis of corticobasal degeneration , 2013, Neurology.

[79]  R. Petersen,et al.  Clinical and electrophysiologic variability in amyotrophic lateral sclerosis within a kindred harboring the C9ORF72 repeat expansion , 2013, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[80]  A. Singleton,et al.  TREM2 variants in Alzheimer's disease. , 2013, The New England journal of medicine.

[81]  A. Hofman,et al.  Variant of TREM2 associated with the risk of Alzheimer's disease. , 2013, The New England journal of medicine.

[82]  G. Comi,et al.  Ubiquilin 2 mutations in Italian patients with amyotrophic lateral sclerosis and frontotemporal dementia , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[83]  A. Al-Chalabi,et al.  Mutation analysis of VCP in British familial and sporadic amyotrophic lateral sclerosis patients , 2012, Neurobiology of Aging.

[84]  Jonathan M. Bekisz,et al.  Cognitive decline and reduced survival in C9orf72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[85]  F. Jessen,et al.  A Pan-European Study of the C9orf72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats , 2012, Human mutation.

[86]  P. S. St George-Hyslop,et al.  SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis , 2012, Neurology.

[87]  A. Singleton,et al.  Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. , 2012, JAMA neurology.

[88]  T. Hortobágyi,et al.  An MND/ALS phenotype associated with C9orf72 repeat expansion: Abundant p62‐positive, TDP‐43‐negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline , 2012, Neuropathology : official journal of the Japanese Society of Neuropathology.

[89]  J. Hodges,et al.  C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts , 2012, Neurology.

[90]  D. Geschwind,et al.  Frontotemporal dementia due to C9ORF72 mutations , 2012, Neurology.

[91]  A. Chiò,et al.  Amyotrophic lateral sclerosis/frontotemporal dementia with predominant manifestations of obsessive–compulsive disorder associated to GGGGCC expansion of the c9orf72 gene , 2012, Journal of Neurology.

[92]  I. Mackenzie,et al.  Advances in understanding the molecular basis of frontotemporal dementia , 2012, Nature Reviews Neurology.

[93]  J. Hardy,et al.  Familial Lund frontotemporal dementia caused by C9ORF72 hexanucleotide expansion , 2012, Neurobiology of Aging.

[94]  K. Rankin,et al.  Clinical characterization of bvFTD due to FUS neuropathology , 2012, Neurocase.

[95]  M. Corbo,et al.  Wide phenotypic spectrum of the TARDBP gene: homozygosity of A382T mutation in a patient presenting with amyotrophic lateral sclerosis, Parkinson's disease, and frontotemporal lobar degeneration, and in neurologically healthy subject , 2012, Neurobiology of Aging.

[96]  Katherine R. Smith,et al.  Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. , 2012, American journal of human genetics.

[97]  Marc Cruts,et al.  Locus-Specific Mutation Databases for Neurodegenerative Brain Diseases , 2012, Human mutation.

[98]  J. Grafman,et al.  FUS and TDP43 genetic variability in FTD and CBS , 2012, Neurobiology of Aging.

[99]  M. Rossor,et al.  Alzheimer's pathology in primary progressive aphasia , 2012, Neurobiology of Aging.

[100]  R. Rademakers C9orf72 repeat expansions in patients with ALS and FTD , 2012, The Lancet Neurology.

[101]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[102]  J. Hardy,et al.  Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. , 2012, Brain : a journal of neurology.

[103]  H. Feldman,et al.  Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. , 2012, Brain : a journal of neurology.

[104]  Y. Pijnenburg,et al.  The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. , 2012, Brain : a journal of neurology.

[105]  A. Al-Chalabi,et al.  Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study , 2012, The Lancet Neurology.

[106]  F. Marrosu,et al.  Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. , 2012, Brain : a journal of neurology.

[107]  D. Neary,et al.  Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. , 2012, Brain : a journal of neurology.

[108]  David T. Jones,et al.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 , 2012, Brain : a journal of neurology.

[109]  C. Jack,et al.  Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics , 2012, Brain : a journal of neurology.

[110]  Nick C Fox,et al.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features , 2012, Alzheimer's & Dementia.

[111]  F. Marrosu,et al.  Frontotemporal dementia with psychosis, parkinsonism, visuo-spatial dysfunction, upper motor neuron involvement associated to expansion of C9ORF72: a peculiar phenotype? , 2012, Journal of Neurology.

[112]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[113]  A. Eisen,et al.  Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p , 2012, Acta Neuropathologica.

[114]  J. Rohrer,et al.  Phenotypic signatures of genetic frontotemporal dementia. , 2011, Current opinion in neurology.

[115]  A. Chiò,et al.  A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms, and FTD , 2011, Neurobiology of Aging.

[116]  T. Hortobágyi,et al.  p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.

[117]  T. Ferman,et al.  Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 , 2011, Acta Neuropathologica.

[118]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[119]  D. Geschwind,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[120]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[121]  C. Sander,et al.  RNA targets of wild-type and mutant FET family proteins , 2011, Nature Structural &Molecular Biology.

[122]  Charles D. Smith,et al.  The Multiple Faces of Valosin-Containing Protein-Associated Diseases: Inclusion Body Myopathy with Paget’s Disease of Bone, Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis , 2011, Journal of Molecular Neuroscience.

[123]  J. Hodges,et al.  Motor neuron dysfunction in frontotemporal dementia. , 2011, Brain : a journal of neurology.

[124]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[125]  Olaf Ansorge,et al.  FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. , 2011, Brain : a journal of neurology.

[126]  Nick C. Fox,et al.  Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration , 2011, Brain : a journal of neurology.

[127]  J. Gunter,et al.  Trajectories of brain and hippocampal atrophy in FTD with mutations in MAPT or GRN , 2011, Neurology.

[128]  N. Bresolin,et al.  A novel MAPT mutation associated with the clinical phenotype of progressive nonfluent aphasia , 2011, Alzheimer's & Dementia.

[129]  W. Seeley,et al.  Inclusion body myopathy with Paget disease of bone and frontotemporal dementia linked to VCP p.Arg155Cys in a Korean family. , 2011, Archives of neurology.

[130]  B. Oostra,et al.  Broadening the phenotype of TARDBP mutations: the TARDBP Ala382Thr mutation and Parkinson’s disease in Sardinia , 2011, neurogenetics.

[131]  J. Trojanowski,et al.  A harmonized classification system for FTLD-TDP pathology , 2011, Acta Neuropathologica.

[132]  A. Sano,et al.  Familial Semantic Dementia with P301L Mutation in the Tau Gene , 2011, Dementia and Geriatric Cognitive Disorders.

[133]  A. Goate,et al.  Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. , 2011, Archives of neurology.

[134]  Janel O. Johnson,et al.  Large proportion of amyotrophic lateral sclerosis cases in Sardinia due to a single founder mutation of the TARDBP gene. , 2011, Archives of neurology.

[135]  C. Patterson,et al.  Commentary on “Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.” A Canadian perspective , 2011, Alzheimer's & Dementia.

[136]  William T. Hu,et al.  Genetic and clinical features of progranulin-associated frontotemporal lobar degeneration. , 2011, Archives of neurology.

[137]  Kazuhiko Yanai,et al.  18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease. , 2011, Brain : a journal of neurology.

[138]  D. Hernandez,et al.  Familial frontotemporal dementia with amyotrophic lateral sclerosis and a shared haplotype on chromosome 9p , 2011, Journal of Neurology.

[139]  Gene W. Yeo,et al.  Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 , 2011, Nature Neuroscience.

[140]  J. Ule,et al.  Characterising the RNA targets and position-dependent splicing regulation by TDP-43; implications for neurodegenerative diseases , 2011, Nature Neuroscience.

[141]  K. Sleegers,et al.  TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort , 2011, Brain : a journal of neurology.

[142]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[143]  H. Feldman,et al.  rs5848 polymorphism and serum progranulin level , 2011, Journal of the Neurological Sciences.

[144]  M. Chiu,et al.  rs5848 Variant of Progranulin Gene Is a Risk of Alzheimer’s Disease in the Taiwanese Population , 2011, Neurodegenerative Diseases.

[145]  P. S. St George-Hyslop,et al.  Intra-familial clinical heterogeneity due to FTLD-U with TDP-43 proteinopathy caused by a novel deletion in progranulin gene (PGRN). , 2011, Journal of Alzheimer's disease : JAD.

[146]  D. Geschwind,et al.  TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers , 2010, Neurology.

[147]  Allissa Dillman,et al.  Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. , 2010, American journal of human genetics.

[148]  G. Comi,et al.  TARDBP mutations in frontotemporal lobar degeneration: frequency, clinical features, and disease course. , 2010, Rejuvenation research.

[149]  Sonja W. Scholz,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2010, Neuron.

[150]  J. Hardy,et al.  Familial early onset frontotemporal dementia caused by a novel S356T MAPT mutation, initially diagnosed as schizophrenia , 2010, Clinical Neurology and Neurosurgery.

[151]  H. Feldman,et al.  Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin , 2010, Neuron.

[152]  Sébastien Ourselin,et al.  Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations☆ , 2010, NeuroImage.

[153]  M. Farrer,et al.  Autonomic failures in Perry syndrome with DCTN1 mutation. , 2010, Parkinsonism & related disorders.

[154]  Nick C Fox,et al.  Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[155]  J. Hodges,et al.  Novel L284R MAPT Mutation in a Family with an Autosomal Dominant Progressive Supranuclear Palsy Syndrome , 2010, Neurodegenerative Diseases.

[156]  W. Engel,et al.  Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia , 2010, Neurology.

[157]  M. Rossor,et al.  Syndromes of nonfluent primary progressive aphasia , 2010, Neurology.

[158]  A. Chiò,et al.  Amyotrophic lateral sclerosis-frontotemporal lobar dementia in 3 families with p.Ala382Thr TARDBP mutations. , 2010, Archives of neurology.

[159]  F. Pierelli,et al.  Familial frontotemporal dementia with parkinsonism associated with the progranulin c.C1021T (p.Q341X) mutation. , 2010, Parkinsonism & related disorders.

[160]  Guiliang Tang,et al.  miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. , 2010, The American journal of pathology.

[161]  C. Jack,et al.  Caudate atrophy on MRI is a characteristic feature of FTLD‐FUS , 2010, European journal of neurology.

[162]  P. Scheltens,et al.  Dementia Mimicking Alzheimer's Disease Owing to a Tau Mutation: CSF and PET Findings , 2010, Alzheimer disease and associated disorders.

[163]  B. Boeve,et al.  Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[164]  R. Petersen,et al.  FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration , 2010, Acta Neuropathologica.

[165]  Robert V Farese,et al.  MicroRNA-29b Regulates the Expression Level of Human Progranulin, a Secreted Glycoprotein Implicated in Frontotemporal Dementia , 2010, PloS one.

[166]  F. Mastaglia,et al.  Two Australian families with inclusion-body myopathy, Paget’s disease of bone and frontotemporal dementia: Novel clinical and genetic findings , 2010, Neuromuscular Disorders.

[167]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[168]  Paul G. Ince,et al.  Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS) , 2010, PloS one.

[169]  K. Sleegers,et al.  Genetic contribution of FUS to frontotemporal lobar degeneration , 2010, Neurology.

[170]  G. Schellenberg,et al.  The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. , 2010, Archives of neurology.

[171]  R. Petersen,et al.  Alzheimer disease-like phenotype associated with the c.154delA mutation in progranulin. , 2010, Archives of neurology.

[172]  Y. Kuroiwa,et al.  The RNA-binding protein FUS/TLS is a common aggregate-interacting protein in polyglutamine diseases , 2010, Neuroscience Research.

[173]  M. J. Fresnadillo Martínez,et al.  Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions , 2010, Nature Genetics.

[174]  E. Warrington,et al.  Progranulin-associated primary progressive aphasia: A distinct phenotype? , 2010, Neuropsychologia.

[175]  N. Bresolin,et al.  Progranulin plasma levels as potential biomarker for the identification of GRN deletion carriers. A case with atypical onset as clinical amnestic Mild Cognitive Impairment converted to Alzheimer's disease , 2009, Journal of the Neurological Sciences.

[176]  M. Kiernan,et al.  FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis , 2009, Journal of Neurology, Neurosurgery & Psychiatry.

[177]  J. Manley,et al.  The TET family of proteins: functions and roles in disease. , 2009, Journal of molecular cell biology.

[178]  John Q. Trojanowski,et al.  Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update , 2009, Acta Neuropathologica.

[179]  Nick C Fox,et al.  The heritability and genetics of frontotemporal lobar degeneration , 2009, Neurology.

[180]  A. Bateman,et al.  The granulin gene family: from cancer to dementia , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[181]  M. Luca,et al.  Mutation within TARDBP leads to Frontotemporal Dementia without motor neuron disease , 2009, Human mutation.

[182]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[183]  I. Mackenzie,et al.  Absence of FUS-immunoreactive pathology in frontotemporal dementia linked to chromosome 3 (FTD-3) caused by mutation in the CHMP2B gene , 2009, Acta Neuropathologica.

[184]  D. Munoz,et al.  FUS pathology in basophilic inclusion body disease , 2009, Acta Neuropathologica.

[185]  J. Landers,et al.  Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort , 2009, Neurology.

[186]  V. Meininger,et al.  Mutations in FUS cause FALS and SALS in French and French Canadian populations , 2009, Neurology.

[187]  C R Jack,et al.  Atrophy patterns in IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M MAPT mutations , 2009, Neurology.

[188]  D. Galimberti,et al.  Absence of TARDBP Gene Mutations in an Italian Series of Patients with Frontotemporal Lobar Degeneration , 2009, Dementia and Geriatric Cognitive Disorders.

[189]  H. Brožová,et al.  TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea , 2009, Movement disorders : official journal of the Movement Disorder Society.

[190]  S. Engelborghs,et al.  Clinical heterogeneity in 3 unrelated families linked to VCP p.Arg159His , 2009, Neurology.

[191]  H. Kretzschmar,et al.  Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease , 2009, Acta Neuropathologica.

[192]  Elena Prieto,et al.  Cortical atrophy and language network reorganization associated with a novel progranulin mutation. , 2009, Cerebral cortex.

[193]  P. Deyn,et al.  Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS , 2009, Neurobiology of Aging.

[194]  J. Morris,et al.  TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy , 2009, Acta Neuropathologica.

[195]  A. Destée,et al.  Characterization of DCTN1 genetic variability in neurodegeneration , 2009, Neurology.

[196]  S. Heath,et al.  Chromosome 9p-linked families with frontotemporal dementia associated with motor neuron disease , 2009, Neurology.

[197]  C. Jack,et al.  Prominent phenotypic variability associated with mutations in Progranulin , 2009, Neurobiology of Aging.

[198]  K. Sleegers,et al.  Serum biomarker for progranulin‐associated frontotemporal lobar degeneration , 2009, Annals of neurology.

[199]  K. Claeys,et al.  Clinical outcome in 19 French and Spanish patients with valosin-containing protein myopathy associated with Paget’s disease of bone and frontotemporal dementia , 2009, Neuromuscular Disorders.

[200]  B. Dubois,et al.  TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration , 2009, Annals of neurology.

[201]  Jennifer L. Whitwell,et al.  MRI Correlates of Protein Deposition and Disease Severity in Postmortem Frontotemporal Lobar Degeneration , 2009, Neurodegenerative Diseases.

[202]  C R Jack,et al.  Voxel-based morphometry patterns of atrophy in FTLD with mutations in MAPT or PGRN , 2009, Neurology.

[203]  D. Dickson,et al.  Brainstem atrophy on routine MR study in pallidopontonigral degeneration , 2009, Journal of Neurology.

[204]  A. Djamshidian,et al.  A novel mutation in the VCP gene (G157R) in a german family with inclusion‐body myopathy with paget disease of bone and frontotemporal dementia , 2009, Muscle & nerve.

[205]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[206]  M. Pericak-Vance,et al.  Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2009, Science.

[207]  A. Kurz,et al.  No association of common VCP variants with sporadic frontotemporal dementia , 2009, Neurobiology of Aging.

[208]  R. Petersen,et al.  Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members , 2009, Brain : a journal of neurology.

[209]  M. Farrer,et al.  DCTN1 mutations in Perry syndrome , 2009, Nature Genetics.

[210]  K. Majamaa,et al.  Role of MAPT mutations and haplotype in frontotemporal lobar degeneration in Northern Finland , 2008, BMC neurology.

[211]  V. Kimonis,et al.  VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. , 2008, Biochimica et biophysica acta.

[212]  V. Meininger,et al.  Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis , 2008, Journal of Medical Genetics.

[213]  W. Kamphorst,et al.  Distinct genetic forms of frontotemporal dementia , 2008, Neurology.

[214]  G. Binetti,et al.  Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration , 2008, Neurology.

[215]  Peter Heutink,et al.  Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia , 2008, The Lancet Neurology.

[216]  J. Trojanowski,et al.  Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. , 2008, Archives of neurology.

[217]  D. Geschwind,et al.  Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis , 2008, PLoS genetics.

[218]  W. Brooks,et al.  Pedigree with frontotemporal lobar degeneration – motor neuron disease and Tar DNA binding protein-43 positive neuropathology: genetic linkage to chromosome 9 , 2008, BMC neurology.

[219]  K. Sleegers,et al.  Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease , 2008, Neurology.

[220]  R. Petersen,et al.  Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia , 2008, Human molecular genetics.

[221]  Richard Boyes,et al.  Mapping the progression of progranulin-associated frontotemporal lobar degeneration , 2008, Nature Clinical Practice Neurology.

[222]  D Perani,et al.  Brain magnetic resonance imaging structural changes in a pedigree of asymptomatic progranulin mutation carriers. , 2008, Rejuvenation research.

[223]  B. McConkey,et al.  TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis , 2008, Nature Genetics.

[224]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[225]  J. Morris,et al.  TDP‐43 A315T mutation in familial motor neuron disease , 2008, Annals of neurology.

[226]  Marc Cruts,et al.  Loss of progranulin function in frontotemporal lobar degeneration. , 2008, Trends in genetics : TIG.

[227]  A. Kakita,et al.  TDP‐43 mutation in familial amyotrophic lateral sclerosis , 2008, Annals of neurology.

[228]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[229]  Eric Guedj,et al.  Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. , 2008, Brain : a journal of neurology.

[230]  T. Meitinger,et al.  A novel deletion in progranulin gene is associated with FTDP-17 and CBS , 2008, Neurobiology of Aging.

[231]  Julie S Snowden,et al.  Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: comparison with patients with MAPT and no known mutations. , 2008, Brain : a journal of neurology.

[232]  Pietro Pietrini,et al.  In vivo and Postmortem Clinicoanatomical Correlations in Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17 , 2008, Neurodegenerative Diseases.

[233]  Andrew King,et al.  A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. , 2008, Brain : a journal of neurology.

[234]  C. Jack,et al.  Voxel-based morphometry in autopsy proven PSP and CBD , 2008, Neurobiology of Aging.

[235]  A. Broccolini,et al.  An Italian family with inclusion‐body myopathy and frontotemporal dementia due to mutation in the VCP gene , 2008, Muscle & nerve.

[236]  D. Kareken,et al.  The tauopathy associated with mutation +3 in intron 10 of Tau: characterization of the MSTD family , 2007, Brain : a journal of neurology.

[237]  K. Sleegers,et al.  Alzheimer and Parkinson diagnoses in progranulin null mutation carriers in an extended founder family. , 2007, Archives of neurology.

[238]  P. Johannsen,et al.  A Reassessment of the Neuropathology of Frontotemporal Dementia Linked to Chromosome 3 , 2007, Journal of neuropathology and experimental neurology.

[239]  D. Munoz,et al.  Progressive Nonfluent Aphasia Associated With a New Mutation V363I in Tau Gene , 2007, American journal of Alzheimer's disease and other dementias.

[240]  M. Weiner,et al.  Patterns of MRI atrophy in tau positive and ubiquitin positive frontotemporal lobar degeneration , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[241]  D. Neary,et al.  TDP-43 gene analysis in frontotemporal lobar degeneration , 2007, Neuroscience Letters.

[242]  P. Heutink,et al.  Progranulin mutations in Dutch familial frontotemporal lobar degeneration , 2007, European Journal of Human Genetics.

[243]  Clifford R Jack,et al.  Voxel-based morphometry in frontotemporal lobar degeneration with ubiquitin-positive inclusions with and without progranulin mutations. , 2007, Archives of neurology.

[244]  C. Jack,et al.  Distinctive MRI findings in pallidopontonigral degeneration (PPND) , 2007, Neurology.

[245]  V. Meininger,et al.  Three families with amyotrophic lateral sclerosis and frontotemporal dementia with evidence of linkage to chromosome 9p. , 2007, Archives of neurology.

[246]  Dennis W Dickson,et al.  Progressive Supranuclear Palsy: Pathology and Genetics , 2007, Brain pathology.

[247]  M. Spillantini,et al.  Hereditary Frontotemporal Dementia Caused by Tau Gene Mutations , 2007, Brain pathology.

[248]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[249]  J. Hardy,et al.  Progranulin mutations and amyotrophic lateral sclerosis or amyotrophic lateral sclerosis–frontotemporal dementia phenotypes , 2006, Journal of Neurology, Neurosurgery & Psychiatry.

[250]  Guy A Rouleau,et al.  Genetics of familial and sporadic amyotrophic lateral sclerosis. , 2006, Biochimica et biophysica acta.

[251]  D. Neary,et al.  Progranulin gene mutations associated with frontotemporal dementia and progressive non-fluent aphasia. , 2006, Brain : a journal of neurology.

[252]  J. Hardy,et al.  Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. , 2006, Brain : a journal of neurology.

[253]  S. Melquist,et al.  Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. , 2006, Human molecular genetics.

[254]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[255]  J. Collinge,et al.  ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B) , 2006, Neurology.

[256]  P. Pietrini,et al.  Characteristics of frontotemporal dementia patients with a Progranulin mutation , 2006, Annals of neurology.

[257]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[258]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[259]  D. Neary,et al.  Dementia lacking distinctive histology (DLDH) revisited , 2006, Acta Neuropathologica.

[260]  F. Baas,et al.  Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. , 2006, Brain : a journal of neurology.

[261]  H. Horvitz,et al.  A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia , 2006, Neurology.

[262]  Joseph James Duffy,et al.  Trigeminal neuralgia due to pontine infarction , 2006, Neurology.

[263]  S. Reske,et al.  Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD , 2005, Annals of neurology.

[264]  Holger Hummerich,et al.  Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia , 2005, Nature Genetics.

[265]  C. Jack,et al.  Longitudinal characterization of two siblings with frontotemporal dementia and parkinsonism linked to chromosome 17 associated with the S305N tau mutation. , 2005, Brain : a journal of neurology.

[266]  C. Broeckhoven,et al.  The role of tau (MAPT) in frontotemporal dementia and related tauopathies , 2004, Human mutation.

[267]  S. Pulst,et al.  Somatic and germline instability of the ATTCT repeat in spinocerebellar ataxia type 10. , 2004, American journal of human genetics.

[268]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[269]  W. Kamphorst,et al.  Variable phenotypic expression and extensive tau pathology in two families with the novel tau mutation L315R , 2003, Annals of neurology.

[270]  A. Albanese,et al.  A case of dementia parkinsonism resembling progressive supranuclear palsy due to mutation in the tau protein gene. , 2003, Archives of neurology.

[271]  A. Levy,et al.  A Canadian Cohort Study of Cognitive Impairment and Related Dementias (ACCORD): Study Methods and Baseline Results , 2003, Neuroepidemiology.

[272]  G. Binetti,et al.  Prevalence of TAU mutations in an Italian clinical series of familial frontotemporal patients , 2003, Neuroscience Letters.

[273]  R. Uitti,et al.  Clinical features of frontotemporal dementia due to the intronic tau 10+16 mutation , 2003, Neurology.

[274]  B. Ghetti,et al.  Clinical and genetic studies of families with the tau N279K mutation (FTDP-17) , 2002, Neurology.

[275]  Catherine Lomen-Hoerth,et al.  The overlap of amyotrophic lateral sclerosis and frontotemporal dementia , 2002, Neurology.

[276]  L. Peltonen,et al.  Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. , 2002, American journal of human genetics.

[277]  C. Duijn,et al.  Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cM interval , 2002, Molecular Psychiatry.

[278]  T. Iwatsubo,et al.  Late‐onset frontotemporal dementia with a novel exon 1 (Arg5His) tau gene mutation , 2002, Annals of neurology.

[279]  Mark A. Levenstien,et al.  Clinical delineation and localization to chromosome 9p13.3-p12 of a unique dominant disorder in four families: hereditary inclusion body myopathy, Paget disease of bone, and frontotemporal dementia. , 2001, Molecular genetics and metabolism.

[280]  B Miller,et al.  Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. , 2001, Archives of neurology.

[281]  W. Kamphorst,et al.  Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21-22. , 2001, Brain : a journal of neurology.

[282]  G. Schellenberg,et al.  Frequency of tau gene mutations in familial and sporadic cases of non-Alzheimer dementia. , 2001, Archives of neurology.

[283]  R. Uitti,et al.  Two brothers with frontotemporal dementia and parkinsonism with an N279K mutation of the tau gene , 2000, Neurology.

[284]  Leena Peltonen,et al.  Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts , 2000, Nature Genetics.

[285]  T D Bird,et al.  Familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions , 2000, Neurology.

[286]  W. Kamphorst,et al.  Phenotypic variation in hereditary frontotemporal dementia with tau mutations , 1999, Annals of neurology.

[287]  R. Faber,et al.  Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. , 1999, Neurology.

[288]  R. Petersen,et al.  Frequency of tau mutations in three series of non‐Alzheimer's degenerative dementia , 1999, Annals of neurology.

[289]  C. Duijn,et al.  High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. , 1999, American journal of human genetics.

[290]  A Klug,et al.  Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[291]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[292]  G. Schellenberg,et al.  Tau is a candidate gene for chromosome 17 frontotemporal dementia , 1998, Annals of neurology.

[293]  L. Lannfelt,et al.  Mapping of a disease locus for familial rapidly progressive frontotemporal dementia to chromosome 17q12-21. , 1997, American journal of medical genetics.

[294]  Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester Groups. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[295]  N. Mandahl,et al.  Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma , 1993, Nature.

[296]  R. Larson,et al.  Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma , 1993, Nature Genetics.

[297]  C. Junien,et al.  Myotonic dystrophy: size- and sex-dependent dynamics of CTG meiotic instability, and somatic mosaicism. , 1993, American journal of human genetics.

[298]  K. Kosik,et al.  Structure and novel exons of the human tau gene. , 1992, Biochemistry.

[299]  M. Goedert,et al.  Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. , 1990, The EMBO journal.

[300]  R. A. Crowther,et al.  Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease , 1989, Neuron.

[301]  R. Crowther,et al.  Cloning and sequencing of the cDNA encoding an isoform of microtubule‐associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. , 1989, The EMBO journal.

[302]  L. Klinken,et al.  Neuropsychiatric studies in a family with presenile dementia different from Alzheimer and Pick disease , 1987, Acta psychiatrica Scandinavica.

[303]  R. Neve,et al.  Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. , 1986, Brain research.

[304]  M. Ratner,et al.  The Year in Review , 1990, Bio/Technology.

[305]  M. Mesulam,et al.  Slowly progressive aphasia without generalized dementia , 1982, Annals of neurology.

[306]  Manjit,et al.  Neurology , 1912, NeuroImage.

[307]  M. Mesulam,et al.  Progranulin Mutations in Primary Progressive Aphasia , 2016 .

[308]  张静,et al.  Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening , 2015 .

[309]  D. Holtzman,et al.  Analysis of IFT 74 as a candidate gene for chromosome 9 p-linked ALS-FTD , 2015 .

[310]  F. Chollet,et al.  A case of logopenic primary progressive aphasia with C9ORF72 expansion and cortical florbetapir binding. , 2014, Journal of Alzheimer's disease : JAD.

[311]  M. Grossman,et al.  Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier , 2014, Acta Neuropathologica.

[312]  Katie Kingwell Stroke: Improving the management of patients at risk of haemorrhagic stroke , 2014, Nature Reviews Neurology.

[313]  I. Le Ber Genetics of frontotemporal lobar degeneration: an up-date and diagnosis algorithm. , 2013, Revue neurologique.

[314]  R. Petersen,et al.  neurodegeneration : evidence for association of the p . R 47 H variant with frontotemporal dementia and Parkinson ¿ s disease Permalink , 2013 .

[315]  N. Bresolin,et al.  Early onset behavioral variant frontotemporal dementia due to the C9ORF72 hexanucleotide repeat expansion: psychiatric clinical presentations. , 2012, Journal of Alzheimer's disease : JAD.

[316]  L. Benussi,et al.  Circulating progranulin as a biomarker for neurodegenerative diseases. , 2012, American journal of neurodegenerative disease.

[317]  Dennis W Dickson,et al.  C9ORF72 repeat expansions and other FTD gene mutations in a clinical AD patient series from Mayo Clinic. , 2012, American journal of neurodegenerative disease.

[318]  T. Ogura,et al.  Recent advances in p97/VCP/Cdc48 cellular functions. , 2012, Biochimica et biophysica acta.

[319]  Robert A. Gross,et al.  Altered functional connectivity in asymptomatic MAPT subjects: A comparison to bvFTD , 2011 .

[320]  J. Hodges,et al.  Low serum progranulin predicts the presence of mutations: a prospective study. , 2010, Journal of Alzheimer's disease : JAD.

[321]  D. Campion,et al.  Frontotemporal dementia phenotype associated with MAPT gene duplication. , 2010, Journal of Alzheimer's disease : JAD.

[322]  B. Dubois,et al.  FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis. , 2010, Journal of Alzheimer's disease : JAD.

[323]  J. Trojanowski,et al.  Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations , 2008, Acta Neuropathologica.

[324]  E. Buratti,et al.  Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. , 2008, Frontiers in bioscience : a journal and virtual library.

[325]  Nancy Johnson,et al.  Progranulin mutations in primary progressive aphasia: the PPA1 and PPA3 families. , 2007, Archives of neurology.

[326]  D. Geschwind,et al.  Epidemiology and genetics of frontotemporal dementia/Pick's disease , 2003, Annals of neurology.

[327]  A. Rajput,et al.  Progressive Supranuclear Palsy , 2001, Drugs & aging.