Adaptable neural networks for modeling recursive non-linear systems
暂无分享,去创建一个
[1] San-qi Li,et al. Predictive Dynamic Bandwidth Allocation for Efficient Transport of Real-Time VBR Video over ATM , 1995, IEEE J. Sel. Areas Commun..
[2] George E. Konstantoulakis,et al. Efficient modeling of VBR MPEG-1 coded video sources , 2000, IEEE Trans. Circuits Syst. Video Technol..
[3] G. Sicuranza. Quadratic filters for signal processing , 1992, Proc. IEEE.
[4] Stefanos D. Kollias,et al. On-line retrainable neural networks: improving the performance of neural networks in image analysis problems , 2000, IEEE Trans. Neural Networks Learn. Syst..
[5] Les E. Atlas,et al. Recurrent neural networks and robust time series prediction , 1994, IEEE Trans. Neural Networks.
[6] S. Kollias,et al. MODELING AND QUEUING ANALYSIS OF VARIABLE-BIT-RATE MPEG VIDEO STREAMS , 1998 .
[7] S. Haykin,et al. Adaptive Filter Theory , 1986 .
[8] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[9] Po-Rong Chang,et al. Optimal Nonlinear Adaptive Prediction and Modeling of MPEG Video in ATM Networks Using Pipelined Recurrent Neural Networks , 1997, IEEE J. Sel. Areas Commun..
[10] David G. Luenberger,et al. Introduction to Linear and Nonlinear Programming , 1973 .
[11] Stefanos D. Kollias,et al. An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources , 2003, IEEE Trans. Neural Networks.