QMR: a quasi-minimal residual method for non-Hermitian linear systems

SummaryThe biconjugate gradient (BCG) method is the “natural” generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. In this paper, we present a novel BCG-like approach, the quasi-minimal residual (QMR) method, which overcomes the problems of BCG. An implementation of QMR based on a look-ahead version of the nonsymmetric Lanczos algorithm is proposed. It is shown how BCG iterates can be recovered stably from the QMR process. Some further properties of the QMR approach are given and an error bound is presented. Finally, numerical experiments are reported.

[1]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[2]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[3]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[4]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[5]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[6]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[7]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[8]  T. Manteuffel The Tchebychev iteration for nonsymmetric linear systems , 1977 .

[9]  Y. Saad The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .

[10]  John G. Lewis,et al.  Sparse matrix test problems , 1982, SGNM.

[11]  D. Taylor Analysis of the Look Ahead Lanczos Algorithm. , 1982 .

[12]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[13]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[14]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[15]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[16]  R. Freund,et al.  On the constrained Chebyshev approximation problem on ellipses , 1990 .

[17]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[18]  Martin H. Gutknecht,et al.  A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I , 1992, SIAM J. Matrix Anal. Appl..

[19]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[20]  Beresford N. Parlett,et al.  Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..

[21]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[22]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..