Evolution of the basal ganglia in tetrapods: a new perspective based on recent studies in amphibians

[1]  A Randrup,et al.  Apomorphine-induced stereotyped biting in the tortoise in relation to dopaminergic mechanisms. , 1975, Brain, behavior and evolution.

[2]  R. Northcutt Evolution of the telencephalon in nonmammals. , 1981, Annual review of neuroscience.

[3]  L. Heimer,et al.  Ventral striatum and ventral pallidum Components of the motor system? , 1982, Trends in Neurosciences.

[4]  R. Northcutt,et al.  Connections of the bullfrog striatum: Afferent organization , 1983, The Journal of comparative neurology.

[5]  I. Goodman,et al.  Dopaminergic nature of feeding-induced behavioral stereotypies in stressed pigeons , 1983, Pharmacology Biochemistry and Behavior.

[6]  Harvey J. Karten,et al.  Evolution of the amniote basal ganglia , 1984, Trends in Neurosciences.

[7]  L. Heimer,et al.  Cell configurations in the olfactory tubercle of the rat , 1984, The Journal of comparative neurology.

[8]  G. Paxinos The Rat nervous system , 1985 .

[9]  J. Langston,et al.  New amphibian models for the study of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). , 1985, Life sciences.

[10]  André Parent,et al.  Comparative neurobiology of the basal ganglia , 1986 .

[11]  C. D. Stern,et al.  Handbook of Chemical Neuroanatomy Methods in Chemical Neuroanatomy. Edited by A. Bjorklund and T. Hokfelt. Elsevier, Amsterdam, 1983. Cloth bound, 548 pp. UK £140. (Volume 1 in the series). , 1986, Neurochemistry International.

[12]  D. S. Zahm,et al.  The ventral striatopallidothalamic projection: I. The striatopallidal link originating in the striatal parts of the olfactory tubercle , 1987, The Journal of comparative neurology.

[13]  W. Smeets,et al.  Histochemical identification of pallidal and striatal structures in the lizard Gekko gecko: Evidence for compartmentalization , 1987, The Journal of comparative neurology.

[14]  A. Jonker,et al.  Efferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko , 1988, The Journal of comparative neurology.

[15]  H. Groenewegen,et al.  The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat , 1988, Neuroscience.

[16]  A. Jonker,et al.  Efferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko , 1988 .

[17]  S. Haber,et al.  Interrelationship of the distribution of neuropeptides and tyrosine hydroxylase immunoreactivity in the human substantia nigra , 1989, The Journal of comparative neurology.

[18]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[19]  C. Gerfen,et al.  Compartmental organization of the ventral striatum of the rat: Immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium‐binding protein , 1989, The Journal of comparative neurology.

[20]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions , 1990, Trends in Neurosciences.

[21]  A. Reiner,et al.  Extensive co‐occurrence of substance P and dynorphin in striatal projection neurons: An evolutionarily conserved feature of basal ganglia organization , 1990, The Journal of comparative neurology.

[22]  M. Delong,et al.  Primate models of movement disorders of basal ganglia origin , 1990, Trends in Neurosciences.

[23]  A. Fasolo,et al.  Organization of the Basal Telencephalon in Urodela , 1990 .

[24]  A. D. Smith,et al.  The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones , 1990, Trends in Neurosciences.

[25]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[26]  A. Graybiel Neurotransmitters and neuromodulators in the basal ganglia , 1990, Trends in Neurosciences.

[27]  A. Reiner,et al.  Distribution and relative abundance of neurons in the pigeon forebrain containing somatostatin, neuropeptide Y, or both , 1990, The Journal of comparative neurology.

[28]  A. Reiner,et al.  The patterns of neurotransmitter and neuropeptide co-occurrence among striatal projection neurons: conclusions based on recent findings , 1990, Brain Research Reviews.

[29]  W. Smeets Comparative aspects of the distribution of substance P and dopamine immunoreactivity in the substantia nigra of amniotes. , 1991, Brain, behavior and evolution.

[30]  Y. Smith,et al.  Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: A double anterograde labelling study , 1991, Neuroscience.

[31]  W. Smeets,et al.  Comparative aspects of the basal ganglia‐tectal pathways in reptiles , 1991, The Journal of comparative neurology.

[32]  D. S. Zahm,et al.  On the significance of subterritories in the “accumbens” part of the rat ventral striatum , 1992, Neuroscience.

[33]  N. Papalopulu,et al.  Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals. , 1993, Development.

[34]  A. Reiner,et al.  Co-occurrence of γ-aminobutyric acid, parvalbumin and the neurotensin-related neuropeptide LANT6 in pallidal, nigral and striatal neurons in pigeons and monkeys , 1993, Brain Research.

[35]  Luis Puelles,et al.  Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization , 1993, Trends in Neurosciences.

[36]  W. Smeets,et al.  Phylogeny and development of catecholamine systems in the CNS of vertebrates , 1994 .

[37]  W. Smeets,et al.  Development of catecholamine systems in the brain of the lizard Gallotia galloti , 1994, The Journal of comparative neurology.

[38]  A. Butler,et al.  The evolution of the dorsal thalamus of jawed vertebrates, including mammals: Cladistic analysis and a new hypothesis , 1994, Brain Research Reviews.

[39]  N. Mizuno,et al.  Direct projections from the entopeduncular nucleus to the lower brainstem in the rat , 1994, The Journal of comparative neurology.

[40]  H. Groenewegen,et al.  The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei , 1994, Trends in Neurosciences.

[41]  C. Marsden,et al.  The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. , 1994, Brain : a journal of neurology.

[42]  W. Smeets,et al.  Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: An immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine , 1994, The Journal of comparative neurology.

[43]  Charles J. Wilson,et al.  Striatal interneurones: chemical, physiological and morphological characterization , 1995, Trends in Neurosciences.

[44]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[45]  A. Reiner,et al.  Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: implications for the evolution of basal ganglia. , 1995, Brain, behavior and evolution.

[46]  Luis Puelles,et al.  A segmental morphological paradigm for understanding vertebrate forebrains. , 1995, Brain, behavior and evolution.

[47]  W. Smeets,et al.  Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry , 1995, The Journal of comparative neurology.

[48]  A. Reiner,et al.  Organization of the avian “corticostriatal” projection system: A retrograde and anterograde pathway tracing study in pigeons , 1995, The Journal of comparative neurology.

[49]  A. Parent,et al.  Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry , 1995, Brain Research Reviews.

[50]  M. Chesselet,et al.  Basal ganglia and movement disorders: an update , 1996, Trends in Neurosciences.

[51]  A. Reiner,et al.  Avian homologues of mammalian intralaminar, mediodorsal and midline thalamic nuclei: immunohistochemical and hodological evidence. , 1997, Brain, behavior and evolution.

[52]  G. Striedter The telencephalon of tetrapods in evolution. , 1997, Brain, behavior and evolution.

[53]  Sensory innervation of the guinea pig extraocular muscles: A 1,1′‐dioctadecyl‐3,3,3′3′‐tetramethylindocarbocyanine perchlorate tracing and calcitonin gene‐related peptide immunohistochemical study , 1997, The Journal of comparative neurology.

[54]  W. Smeets,et al.  Basal ganglia organization in amphibians: Afferent connections to the striatum and the nucleus accumbens , 1997, The Journal of comparative neurology.

[55]  A. Reiner,et al.  The efferent projections of the dorsal and ventral pallidal parts of the pigeon basal ganglia, studied with biotinylated dextran amine , 1997, Neuroscience.

[56]  W. Smeets,et al.  Distribution of NADPH‐diaphorase and nitric oxide synthase in relation to catecholaminergic neuronal structures in the brain of the lizard Gekko gecko , 1997, The Journal of comparative neurology.

[57]  A. Reiner,et al.  Evidence for a possible avian dorsal thalamic region comparable to the mammalian ventral anterior, ventral lateral, and oral ventroposterolateral nuclei , 1997, The Journal of comparative neurology.

[58]  W. Smeets,et al.  Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs , 1997, The Journal of comparative neurology.

[59]  S. Anderson,et al.  Mutations of the Homeobox Genes Dlx-1 and Dlx-2 Disrupt the Striatal Subventricular Zone and Differentiation of Late Born Striatal Neurons , 1997, Neuron.

[60]  T. Serafini An old friend in a new home: cadherins at the synapse. , 1997, Trends in neurosciences.

[61]  W. Smeets,et al.  Basal ganglia organization in amphibians: Catecholaminergic innervation of the striatum and the nucleus accumbens , 1997, The Journal of comparative neurology.

[62]  W. Smeets,et al.  Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians , 1997, The Journal of comparative neurology.

[63]  W. Smeets,et al.  Anatomical Substrate of Amphibian Basal Ganglia Involvement in Visuomotor Behaviour , 1997, The European journal of neuroscience.

[64]  Thomas M. Jessell,et al.  Molecular and cellular approaches to neural development , 1998 .