D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections.

[1]  R. Hancock,et al.  Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients , 2014, Antibiotics.

[2]  R. Hancock,et al.  A Broad-Spectrum Antibiofilm Peptide Enhances Antibiotic Action against Bacterial Biofilms , 2014, Antimicrobial Agents and Chemotherapy.

[3]  Heleen Van Acker,et al.  Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. , 2014, Trends in microbiology.

[4]  R. Hancock,et al.  Broad-Spectrum Anti-biofilm Peptide That Targets a Cellular Stress Response , 2014, PLoS pathogens.

[5]  R. Hancock,et al.  Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. , 2013, Nature chemical biology.

[6]  M. V. van Hoek,et al.  Biofilms , 2013, Virulence.

[7]  Robert E W Hancock,et al.  Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. , 2013, Current opinion in microbiology.

[8]  H. Yonezawa,et al.  Role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertussis. , 2013, Microbiology.

[9]  S. Hultgren,et al.  Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. , 2013, Cold Spring Harbor perspectives in medicine.

[10]  Michael Y. Galperin,et al.  Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger , 2013, Microbiology and Molecular Reviews.

[11]  B. Kjellerup,et al.  Exploring the applications of invertebrate host-pathogen models for in vivo biofilm infections. , 2012, FEMS immunology and medical microbiology.

[12]  V. Korolik,et al.  Inhibition of Bacterial Biofilm Formation and Swarming Motility by a Small Synthetic Cationic Peptide , 2012, Antimicrobial Agents and Chemotherapy.

[13]  G. Schneider,et al.  Designing antimicrobial peptides: form follows function , 2011, Nature Reviews Drug Discovery.

[14]  L. E. Chávez de Paz,et al.  Role of (p)ppGpp in Biofilm Formation by Enterococcus faecalis , 2011, Applied and Environmental Microbiology.

[15]  F. Lépine,et al.  Active Starvation Responses Mediate Antibiotic Tolerance in Biofilms and Nutrient-Limited Bacteria , 2011, Science.

[16]  R. Hancock,et al.  Pseudomonas aeruginosa: all roads lead to resistance. , 2011, Trends in microbiology.

[17]  Scott N. Dean,et al.  Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides: D-enantiomer of LL-37 , 2011, Front. Microbio..

[18]  Tom Coenye,et al.  Quorum Sensing Inhibitors Increase the Susceptibility of Bacterial Biofilms to Antibiotics In Vitro and In Vivo , 2011, Antimicrobial Agents and Chemotherapy.

[19]  M. V. van Hoek,et al.  Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. , 2010, Biochemical and biophysical research communications.

[20]  Carolyn G. Conant,et al.  New Device for High-Throughput Viability Screening of Flow Biofilms , 2010, Applied and Environmental Microbiology.

[21]  V. Cooper,et al.  Susceptibility of Caenorhabditis elegans to Burkholderia Infection Depends on Prior Diet and Secreted Bacterial Attractants , 2009, PloS one.

[22]  Regine Hengge,et al.  Principles of c-di-GMP signalling in bacteria , 2009, Nature Reviews Microbiology.

[23]  Artem Cherkasov,et al.  Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. , 2009, ACS chemical biology.

[24]  R. Hancock,et al.  Human Host Defense Peptide LL-37 Prevents Bacterial Biofilm Formation , 2008, Infection and Immunity.

[25]  J. Mekalanos,et al.  Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae , 2007, Proceedings of the National Academy of Sciences.

[26]  R. Hancock,et al.  Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies , 2006, Nature Biotechnology.

[27]  V. Shingler,et al.  (p)ppGpp regulates type 1 fimbriation of Escherichia coli by modulating the expression of the site‐specific recombinase FimB , 2006, Molecular microbiology.

[28]  Theresa Stiernagle Maintenance of C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[29]  D. Balestrino,et al.  Characterization of Type 2 Quorum Sensing in Klebsiella pneumoniae and Relationship with Biofilm Formation , 2005, Journal of bacteriology.

[30]  W. Shafer,et al.  Degradation of Human Antimicrobial Peptide LL-37 by Staphylococcus aureus-Derived Proteinases , 2004, Antimicrobial Agents and Chemotherapy.

[31]  H. Vogel,et al.  Diversity of antimicrobial peptides and their mechanisms of action. , 1999, Biochimica et biophysica acta.

[32]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[33]  T. Tosa,et al.  Biochemical Bases for the Antimetabolite Action of l-Serine Hydroxamate , 1971, Journal of bacteriology.

[34]  J. Bartlett,et al.  Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[35]  R. Hancock,et al.  Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances , 2008, Nature Protocols.

[36]  D. Pompliano,et al.  Drugs for bad bugs: confronting the challenges of antibacterial discovery , 2007, Nature Reviews Drug Discovery.

[37]  R. Kolter,et al.  Biofilm formation as microbial development. , 2000, Annual review of microbiology.