Rounding error analysis of the classical Gram-Schmidt orthogonalization process

This paper provides two results on the numerical behavior of the classical Gram-Schmidt algorithm. The first result states that, provided the normal equations associated with the initial vectors are numerically nonsingular, the loss of orthogonality of the vectors computed by the classical Gram-Schmidt algorithm depends quadratically on the condition number of the initial vectors. The second result states that, provided the initial set of vectors has numerical full rank, two iterations of the classical Gram-Schmidt algorithm are enough for ensuring the orthogonality of the computed vectors to be close to the unit roundoff level.

[1]  G. W. Stewart,et al.  Matrix Algorithms: Volume 1, Basic Decompositions , 1998 .

[2]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[5]  Gilbert Strang,et al.  Numerische lineare Algebra , 2003 .

[6]  William Jalby,et al.  Stability Analysis and Improvement of the Block Gram-Schmidt Algorithm , 1991, SIAM J. Sci. Comput..

[7]  J. H. Wilkinson Modern Error Analysis , 1971 .

[8]  J. Rice Experiments on Gram-Schmidt orthogonalization , 1966 .

[9]  Å. Björck Solving linear least squares problems by Gram-Schmidt orthogonalization , 1967 .

[10]  M. Rozložník,et al.  Numerical behaviour of the modified gram-schmidt GMRES implementation , 1997 .

[11]  L. Giraud,et al.  When modified Gram–Schmidt generates a well‐conditioned set of vectors , 2002 .

[12]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[13]  A. Kiełbasiński Analiza numeryczna algorytmu ortogonalizacji Grama-Schmidta , 1974 .

[14]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[15]  Walter Hoffmann,et al.  Iterative algorithms for Gram-Schmidt orthogonalization , 1989, Computing.

[16]  Luc Giraud,et al.  On the Influence of the Orthogonalization Scheme on the Parallel Performance of GMRES , 1998, Euro-Par.

[17]  Richard B. Lehoucq,et al.  Large‐scale eigenvalue calculations for stability analysis of steady flows on massively parallel computers , 2001 .

[18]  Christopher C. Paige,et al.  Loss and Recapture of Orthogonality in the Modified Gram-Schmidt Algorithm , 1992, SIAM J. Matrix Anal. Appl..

[19]  Cornelis Vuik,et al.  Parallel implementation of a multiblock method with approximate subdomain solution , 1999 .

[20]  N. Abdelmalek Round off error analysis for Gram-Schmidt method and solution of linear least squares problems , 1971 .

[21]  Heinz Rutishauser,et al.  Description of Algol 60 , 1967 .

[22]  Achiya Dax,et al.  A modified Gram–Schmidt algorithm with iterative orthogonalization and column pivoting , 2000 .

[23]  E. Schmidt Über die Auflösung linearer Gleichungen mit Unendlich vielen unbekannten , 1908 .