A Survey of Wide Bandgap Power Semiconductor Devices

Wide bandgap semiconductors show superior material properties enabling potential power device operation at higher temperatures, voltages, and switching speeds than current Si technology. As a result, a new generation of power devices is being developed for power converter applications in which traditional Si power devices show limited operation. The use of these new power semiconductor devices will allow both an important improvement in the performance of existing power converters and the development of new power converters, accounting for an increase in the efficiency of the electric energy transformations and a more rational use of the electric energy. At present, SiC and GaN are the more promising semiconductor materials for these new power devices as a consequence of their outstanding properties, commercial availability of starting material, and maturity of their technological processes. This paper presents a review of recent progresses in the development of SiC- and GaN-based power semiconductor devices together with an overall view of the state of the art of this new device generation.

[1]  Hiroshi Kambayashi,et al.  Over 100 A operation normally-off AlGaN/GaN hybrid MOS-HFET on Si substrate with high-breakdown voltage , 2010 .

[2]  C. Scozzie,et al.  4 kV, 10 A Bipolar Junction Transistors in 4H-SiC , 2006, 2006 IEEE International Symposium on Power Semiconductor Devices and IC's.

[3]  R. A. Wood,et al.  Evaluation of a 1200-V, 800-A All-SiC Dual Module , 2011, IEEE Transactions on Power Electronics.

[4]  H. Mantooth,et al.  Power Conversion With SiC Devices at Extremely High Ambient Temperatures , 2007, IEEE Transactions on Power Electronics.

[5]  Mrinal K. Das,et al.  Recent Advances in (0001) 4H-SiC MOS Device Technology , 2004 .

[6]  T. Oka,et al.  AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications , 2008, IEEE Electron Device Letters.

[7]  S. Ogata,et al.  Reliability investigation of SiC bipolar device module in long time inverter operation , 2012, 2012 24th International Symposium on Power Semiconductor Devices and ICs.

[8]  Puqi Ning,et al.  High-Temperature SiC Power Module Electrical Evaluation Procedure , 2011, IEEE Transactions on Power Electronics.

[9]  Y. Sugawara,et al.  4.5 kV 120A SICGT and Its PWM Three Phase Inverter Operation of 100kVA class , 2006, 2006 IEEE International Symposium on Power Semiconductor Devices and IC's.

[10]  J. Wurfl,et al.  Impact of buffer composition on the dynamic on-state resistance of high-voltage AlGaN/GaN HFETs , 2012, 2012 24th International Symposium on Power Semiconductor Devices and ICs.

[11]  A. Agarwal,et al.  Ultra high voltage (>12 kV), high performance 4H-SiC IGBTs , 2012, International Symposium on Power Semiconductor Devices and IC's.

[12]  S. Yoshida,et al.  High power AlGaN/GaN HFET with a high breakdown voltage of over 1.8 kV on 4 inch Si substrates and the suppression of current collapse , 2008, 2008 20th International Symposium on Power Semiconductor Devices and IC's.

[13]  P. Moens,et al.  A HfO2 based 800V/300°C Au-free AlGaN/GaN-on-Si HEMT technology , 2012, 2012 24th International Symposium on Power Semiconductor Devices and ICs.

[14]  Michael S. Shur,et al.  Microwave performance of a 0.25 m gate AlGaN/GaN heterostructure field effect transistor , 1994 .

[15]  R. K. Malhan,et al.  Normally-off Trench JFET Technology in Silicon Carbide (特集 電子デバイス) , 2005 .

[16]  Hiroshi Yano,et al.  Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide , 2010, IEEE Electron Device Letters.

[17]  Peregrine Power Llc Breakthrough in Power Electronics from SiC , 2006 .

[18]  S. Decoutere,et al.  Au-free CMOS-compatible AlGaN/GaN HEMT processing on 200 mm Si substrates , 2012, 2012 24th International Symposium on Power Semiconductor Devices and ICs.

[19]  Joan M. Redwing,et al.  Lateral AlxGa1−xN power rectifiers with 9.7 kV reverse breakdown voltage , 2001 .

[20]  A. Nakajima,et al.  GaN-based bidirectional Super HFETs Using polarization junction concept on insulator substrate , 2012, 2012 24th International Symposium on Power Semiconductor Devices and ICs.

[21]  Stephen J. Pearton,et al.  Comparison of GaN p-i-n and Schottky rectifier performance , 2001 .

[22]  Kern,et al.  New SiC Thin-Wafer Technology Paving the Way of Schottky Diodes with Improved Performance and Reliability , 2012 .

[23]  Frank Brunner,et al.  AlGaN/GaN/GaN:C Back-Barrier HFETs With Breakdown Voltage of Over 1 kV and Low $R_{\scriptscriptstyle{\rm ON}} \times A$ , 2010, IEEE Transactions on Electron Devices.

[24]  Amador Pérez-Tomás,et al.  Effects of cap layer on ohmic Ti/Al contacts to Si+ implanted GaN , 2009 .

[25]  Philippe Godignon,et al.  SiC Schottky Diodes for Harsh Environment Space Applications , 2011, IEEE Transactions on Industrial Electronics.

[26]  Yugang Zhou,et al.  Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode , 2006, IEEE Transactions on Electron Devices.

[27]  J. Millan,et al.  Schottky versus bipolar 3.3 kV SiC diodes , 2008 .

[28]  S. Yoshida,et al.  Lateral Implanted RESURF GaN MOSFETs with BV up to 2.5 kV , 2008, 2008 20th International Symposium on Power Semiconductor Devices and IC's.

[29]  V. Mehrotra,et al.  GaN Switching Devices for High-Frequency, KW Power Conversion , 2006, 2006 IEEE International Symposium on Power Semiconductor Devices and IC's.

[30]  Denis Marcon,et al.  Record Breakdown Voltage (2200 V) of GaN DHFETs on Si With 2- $\mu\hbox{m}$ Buffer Thickness by Local Substrate Removal , 2011, IEEE Electron Device Letters.

[31]  Yoshitaka Kamo,et al.  AlGaN/GaN HEMTs passivated by Cat-CVD SiN film , 2008 .

[32]  P. Parikh,et al.  40-W/mm Double Field-plated GaN HEMTs , 2006, 2006 64th Device Research Conference.

[33]  Xiaosen Liu,et al.  GaN smart power IC technology , 2010 .

[34]  A. Agarwal,et al.  10 kV, 5A 4H-SiC Power DMOSFET , 2006, 2006 IEEE International Symposium on Power Semiconductor Devices and IC's.

[35]  Carl-Mikael Zetterling,et al.  Current Gain Degradation in 4H-SiC Power BJTs , 2011 .

[36]  Michael S. Shur,et al.  Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate , 2000 .

[37]  S. Yoshida,et al.  Fabrication of AlGaN/GaN HFET with a high breakdown voltage of over 1050 V , 2006, 2006 IEEE International Symposium on Power Semiconductor Devices and IC's.

[38]  Ralf Siemieniec,et al.  The 1200V direct-driven SiC JFET power switch , 2011, Proceedings of the 2011 14th European Conference on Power Electronics and Applications.

[39]  S. Yoshida,et al.  Enhancement-mode gan hybrid mos-hemts with ron,sp of 20 mω-cm2 , 2008, 2008 20th International Symposium on Power Semiconductor Devices and IC's.

[40]  D. Boroyevich,et al.  A High-Temperature SiC Three-Phase AC - DC Converter Design for > 100/spl deg/C Ambient Temperature , 2013, IEEE Transactions on Power Electronics.

[41]  Sei-Hyung Ryu,et al.  Recent progress in SiC DMOSFETs and JBS diodes at Cree , 2008, 2008 34th Annual Conference of IEEE Industrial Electronics.

[42]  S. Keller,et al.  High-performance E-mode AlGaN/GaN HEMTs , 2006, IEEE Electron Device Letters.

[43]  B. Hull,et al.  A 180 Amp/4.5 kV 4H-SiC PiN Diode for High Current Power Modules , 2006, 2006 IEEE International Symposium on Power Semiconductor Devices and IC's.

[44]  Konstantin Vassilevski,et al.  Benefits of High-k Dielectrics in 4H-SiC Trench MOSFETs , 2004 .

[45]  J. Lai,et al.  High-power 4H-SiC JBS rectifiers , 2002 .

[46]  Gan Feng,et al.  Breakdown characteristics of 12–20 kV-class 4H-SiC PiN diodes with improved junction termination structures , 2012, 2012 24th International Symposium on Power Semiconductor Devices and ICs.

[47]  Anant K. Agarwal,et al.  Performance, Reliability, and Robustness of 4H-SiC Power DMOSFETs , 2010 .

[48]  H. Matsuo,et al.  8300V Blocking Voltage AlGaN/GaN Power HFET with Thick Poly-AlN Passivation , 2007, 2007 IEEE International Electron Devices Meeting.

[49]  Dominique Tournier,et al.  Process Optimisation for <11-20> 4H-SiC MOSFET Applications , 2006 .

[50]  I. Omura,et al.  Recessed-gate structure approach toward normally off high-Voltage AlGaN/GaN HEMT for power electronics applications , 2006, IEEE Transactions on Electron Devices.