A case study on the effect of smart meter sampling intervals and gap-filling approaches on water distribution network simulations

[1]  Steven G. Buchberger,et al.  Importance of demand modelling in network water quality models: a review , 2008 .

[2]  J. V. Dijk,et al.  A bottom-up approach of stochastic demand allocation in a hydraulic network model: a sensitivity study of model parameters , 2011 .

[3]  Enrico Creaco,et al.  On the choice of the demand and hydraulic modeling approach to WDN real-time simulation , 2017 .

[4]  Monks,et al.  Revealing Unreported Benefits of Digital Water Metering: Literature Review and Expert Opinions , 2019, Water.

[5]  J. V. Dijk,et al.  A bottom-up approach of stochastic demand allocation in water quality modelling , 2010 .

[6]  Rodney Anthony Stewart,et al.  Smart meter enabled informatics for economically efficient diversified water supply infrastructure planning , 2016 .

[7]  Jonas Kjeld Kirstein,et al.  A semi-automated approach to validation and error diagnostics of water network data , 2019 .

[8]  Andrea Castelletti,et al.  Implications of data sampling resolution on water use simulation, end-use disaggregation, and demand management , 2018, Environ. Model. Softw..

[9]  Andrea Castelletti,et al.  Integrated intelligent water-energy metering systems and informatics: Visioning a digital multi-utility service provider , 2018, Environ. Model. Softw..

[10]  Zoran Kapelan,et al.  Quo vadis water distribution model calibration? , 2009 .

[11]  Pierre Mukheibir,et al.  Intelligent Metering for Urban Water: A Review , 2013 .

[12]  Fernand Meyer,et al.  A comparative study of LPWAN technologies for large-scale IoT deployment , 2019, ICT Express.

[13]  Rodney Anthony Stewart,et al.  Smart meters for enhanced water supply network modelling and infrastructure planning , 2014 .