Spherical t휀-designs for approximations on the sphere

A spherical $t$-design is a set of points on the sphere that are nodes of a positive equal weight quadrature rule having algebraic accuracy $t$ for all spherical polynomials with degrees $\le t$. Spherical $t$-designs have many distinguished properties in approximations on the sphere and receive remarkable attention. Although the existence of a spherical $t$-design is known for any $t\ge 0$, a spherical design is only known in a set of interval enclosures on the sphere \cite{chen2011computational} for $t\le 100$. It is unknown how to choose a set of points from the set of interval enclosures to obtain a spherical $t$-design. In this paper we investigate a new concept of point sets on the sphere named spherical $t_\epsilon$-design ($0<\epsilon<1$), which are nodes of a positive weight quadrature rule with algebraic accuracy $t$. The sum of the weights is equal to the area of the sphere and the mean value of the weights is equal to the weight of the quadrature rule defined by the spherical $t$-design. A spherical $t_\epsilon$-design is a spherical $t$-design when $\epsilon=0,$ and a spherical $t$-design is a spherical $t_\epsilon$-design for any $0<\epsilon <1$. We show that any point set chosen from the set of interval enclosures \cite{chen2011computational} is a spherical $t_\epsilon$-design. We then study the worst-case errors of quadrature rules using spherical $t_\epsilon$-designs in a Sobolev space, and investigate a model of polynomial approximation with the $l_1$-regularization using spherical $t_\epsilon$-designs. Numerical results illustrate good performance of spherical $t_\epsilon$-designs for numerical integration and function approximation on the sphere.

[1]  P. Borwein,et al.  Polynomials and Polynomial Inequalities , 1995 .

[2]  Eiichi Bannai,et al.  A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..

[3]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[4]  J. Dick,et al.  A Characterization of Sobolev Spaces on the Sphere and an Extension of Stolarsky’s Invariance Principle to Arbitrary Smoothness , 2012, 1203.5157.

[5]  N. J. A. Sloane,et al.  McLaren’s improved snub cube and other new spherical designs in three dimensions , 1996, Discret. Comput. Geom..

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  Robert J. Renka,et al.  Multivariate interpolation of large sets of scattered data , 1988, TOMS.

[8]  J. Dick,et al.  A simple proof of Stolarsky’s invariance principle , 2011, 1101.4448.

[9]  Robert F. Tichy,et al.  Spherical designs, discrepancy and numerical integration , 1993 .

[10]  Simon Hubbert,et al.  Radial basis functions for the sphere , 2015 .

[11]  Xiaojun Chen,et al.  Well Conditioned Spherical Designs for Integration and Interpolation on the Two-Sphere , 2010, SIAM J. Numer. Anal..

[12]  Ian H. Sloan,et al.  A variational characterisation of spherical designs , 2009, J. Approx. Theory.

[13]  Ian H. Sloan,et al.  Filtered hyperinterpolation: a constructive polynomial approximation on the sphere , 2012 .

[14]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[15]  Ian H. Sloan,et al.  QMC designs: Optimal order Quasi Monte Carlo integration schemes on the sphere , 2012, Math. Comput..

[16]  Xiaojun Chen,et al.  Computational existence proofs for spherical t-designs , 2011, Numerische Mathematik.

[17]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[18]  Manuel Gräf,et al.  On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms , 2011, Numerische Mathematik.

[19]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[20]  Ian H. Sloan,et al.  Cubature over the sphere S2 in Sobolev spaces of arbitrary order , 2006, J. Approx. Theory.

[21]  Shouqiang Du,et al.  A smoothing trust region filter algorithm for nonsmooth least squares problems , 2016 .

[22]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[23]  K. Atkinson,et al.  Spherical Harmonics and Approximations on the Unit Sphere: An Introduction , 2012 .

[24]  Andriy Bondarenko,et al.  Optimal asymptotic bounds for spherical designs , 2010, 1009.4407.

[25]  Johann S. Brauchart,et al.  Numerical Integration over Spheres of Arbitrary Dimension , 2007 .

[26]  Manfred Reimer,et al.  Quadrature Rules for the Surface Integral of the Unit Sphere Based on Extremal Fundamental Systems , 2006 .

[27]  B. Bajnok Construction of spherical t-designs , 1992 .

[28]  Xiaojun Chen,et al.  Existence of Solutions to Systems of Underdetermined Equations and Spherical Designs , 2006, SIAM J. Numer. Anal..

[29]  Ian H. Sloan,et al.  Worst-case errors in a Sobolev space setting for cubature over the sphere $S^2$ , 2005 .

[30]  J. Korevaar,et al.  Spherical faraday cage for the case of equal point charges and chebyshev-type quadrature on the sphere , 1993 .

[31]  Eiichi Bannai,et al.  Remarks on the concepts of t-designs , 2012 .

[32]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[33]  P. Seymour,et al.  Averaging sets: A generalization of mean values and spherical designs , 1984 .

[34]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[35]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[36]  Ian H. Sloan,et al.  Parameter Choice Strategies for Least-squares Approximation of Noisy Smooth Functions on the Sphere , 2015, SIAM J. Numer. Anal..

[37]  Xiaojun Chen,et al.  Regularized Least Squares Approximations on the Sphere Using Spherical Designs , 2012, SIAM J. Numer. Anal..

[38]  Eiichi Bannai On Tight Spherical Designs , 1979, J. Comb. Theory, Ser. A.