Discrete-time Simulation of Stochastic Volterra Equations

We study discrete-time simulation schemes for stochastic Volterra equations, namely the Euler and Milstein schemes, and the corresponding Multi-Level Monte-Carlo method. By using and adapting some results from Zhang [22], together with the Garsia-Rodemich-Rumsey lemma, we obtain the convergence rates of the Euler scheme and Milstein scheme under the supremum norm. We then apply these schemes to approximate the expectation of functionals of such Volterra equations by the (Multi-Level) Monte-Carlo method, and compute their complexity.

[1]  Ahmed Kebaier,et al.  Central limit theorem for the multilevel Monte Carlo Euler method , 2012, 1501.06365.

[2]  E. Lutz Fractional Langevin equation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  C. Pillet,et al.  Ergodic Properties of the Non-Markovian Langevin Equation , 1997 .

[4]  C. Tudor,et al.  On Volterra equations driven by semimartingales , 1988 .

[5]  C. Pillet,et al.  Ergodic properties of classical dissipative systems I , 1998 .

[6]  Adriano M. Garsia,et al.  A Real Variable Lemma and the Continuity of Paths of Some Gaussian Processes , 1970 .

[7]  Zhidong Wang,et al.  Existence and uniqueness of solutions to stochastic Volterra equations with singular kernels and non-Lipschitz coefficients , 2008 .

[8]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[9]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[10]  M. Giles,et al.  Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation , 2012, 1202.6283.

[11]  D. Talay Numerical solution of stochastic differential equations , 1994 .

[12]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[13]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[14]  Carl Graham,et al.  Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation , 2013 .

[15]  Martin Larsson,et al.  Affine Volterra processes , 2017, The Annals of Applied Probability.

[16]  Sebastian Riedel,et al.  From Rough Path Estimates to Multilevel Monte Carlo , 2013, SIAM J. Numer. Anal..

[17]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[18]  Peter E. Kloeden,et al.  Multilevel Monte Carlo for stochastic differential equations with additive fractional noise , 2011, Ann. Oper. Res..

[19]  Antoine Jacquier,et al.  Deep PPDEs for Rough Local Stochastic Volatility , 2019, SSRN Electronic Journal.

[20]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[21]  L. Chevillard Regularized fractional Ornstein-Uhlenbeck processes and their relevance to the modeling of fluid turbulence. , 2017, Physical review. E.

[22]  Xicheng Zhang,et al.  Euler schemes and large deviations for stochastic Volterra equations with singular kernels , 2008 .

[23]  M. Rosenbaum,et al.  The characteristic function of rough Heston models , 2016, 1609.02108.

[24]  Omar El Euch,et al.  Markovian structure of the Volterra Heston model , 2018, Statistics & Probability Letters.

[25]  M. Rosenbaum,et al.  Volatility is rough , 2014, 1410.3394.