Spectral comparison of heavily hydrated salts with disrupted terrains on Europa

Hydrated magnesium sulfate salts have been proposed as major components of the disrupted, reddish terrains on the surface of Europa. This is based on near-infrared reflectance spectra which contain distorted and asymmetric water absorption features typical of moderately hydrated materials such as hexahydrite (MgSO4⋅6H2O) and epsomite (MgSO4⋅7H2O). Hydrated magnesium sulfates having many waters of hydration could produce improved spectral matches. Here we present cryogenic laboratory spectra of highly hydrated sulfur-bearing salts, including hexahydrite, epsomite, bloedite (Na2Mg(SO4)2⋅4H2O), mirabilite (Na2SO4⋅10H2O), sodium sulfide nonahydrate (Na2S⋅9H2O), supersaturated MgSO4, NaHCO3, and Na2SO4 brines, and magnesium sulfate dodecahydrate (MgSO4⋅12H2O). All have been measured under conditions of pressure and temperature appropriate to the surface environment of Europa. Novel methods for preparation, verification and analysis of MgSO4⋅12H2O, which is not stable at standard temperature and pressure (STP), are described. At 100 K, all of these materials exhibit distorted and asymmetric absorption features similar to those in the Europa observations, as well as several weaker, narrow absorptions having widths ranging from 15 to 80 nm. While the agreement with Galileo NIMS observations of dark terrains on Europa is indeed better for highly hydrated salts than for salts of lower hydration states, we conclude that none of these materials alone can account for all of the observed spectral character. As previously suggested, Europa's reddish material appears to be a complex mixture of sulfate hydrates and other materials.

[1]  Robert W. Carlson,et al.  Electron bombardment of Europa , 2001 .

[2]  E. Whalley,et al.  Optical Spectra of Orientationally Disordered Crystals. I. Theory for Translational Lattice Vibrations , 1967 .

[3]  Michael J. S. Belton,et al.  Galileo's Multiinstrument Spectral View of Europa's Surface Composition , 1999 .

[4]  R. Newnham,et al.  Electronic and Vibrational Absorption Spectra in Cordierite , 1967 .

[5]  Bruce C. Kindel,et al.  Using Ground Spectral Irradiance for Model Correction of AVIRIS Data , 1998 .

[6]  B. Mauk,et al.  Ion sputtering and surface erosion at Europa , 1998 .

[7]  A. Lane,et al.  Saturn's inner satellites: Ice chemistry and magnetosphere effects , 2002 .

[8]  C. Chyba,et al.  Possible ecosystems and the search for life on Europa. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Kirschvink,et al.  Life in Ice-Covered Oceans , 1999, Science.

[10]  Henry B. Garrett,et al.  Energetic Ion and Electron Irradiation of the Icy Galilean Satellites , 2001 .

[11]  P. Cassen,et al.  Is there liquid water on Europa , 1979 .

[12]  L. Pauling The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement , 1935 .

[13]  Jeffrey S. Kargel,et al.  Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life , 2000 .

[14]  R. Kirk,et al.  Geology and origin of Europa's “Mitten” feature (Murias Chaos) , 2002 .

[15]  E. Shock,et al.  Composition and stability of salts on the surface of Europa and their oceanic origin , 2001 .

[16]  F. Leblanc,et al.  Energy Distributions for Desorption of Sodium and Potassium from Ice: The Na/K Ratio at Europa , 2002 .

[17]  Steven W. Squyres,et al.  Liquid water and active resurfacing on Europa , 1982, Nature.

[18]  J. K. Crowley,et al.  Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team. , 1998, Science.

[19]  R. Carlson,et al.  Sulfuric Acid Production on Europa: The Radiolysis of Sulfur in Water Ice , 2002 .

[20]  W. McKinnon,et al.  Convective instability in Europa's floating ice shell , 1997 .

[21]  S. Ridgway,et al.  Galilean Satellites: Identification of Water Frost , 1972, Science.

[22]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[23]  R. Ashley,et al.  Spectra of altered rocks in the visible and near infrared , 1979 .

[24]  R. Pappalardo,et al.  Folds on Europa: implications for crustal cycling and accommodation of extension. , 2000, Science.

[25]  R. Clark,et al.  The Galilean satellites: New near-infrared spectral reflectance measurements (0.65–2.5 μm) and a 0.325–5 μm summary , 1980 .

[26]  Jeffrey S. Kargel,et al.  Evaluation of the possible presence of clathrate hydrates in Europa's icy shell or seafloor , 2005 .

[27]  D. L. Wood,et al.  The characterization of beryl and emerald by visible and infrared absorption spectroscopy , 1968 .

[28]  T. McCord,et al.  Amorphous and crystalline ice on the Galilean satellites: A balance between thermal and radiolytic processes , 2003 .

[29]  Tilman Spohn,et al.  Oceans in the icy Galilean satellites of Jupiter , 2002 .

[30]  R. Sullivan,et al.  Morphology of Europan bands at high resolution: A mid‐ocean ridge‐type rift mechanism , 2002 .

[31]  A. Lane,et al.  Europa: Disk-Resolved Ultraviolet Measurements Using the Galileo Ultraviolet Spectrometer , 1998 .

[32]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[33]  E. Whalley STRUCTURES OF ICE AND WATER AS INVESTIGATED BY INFRARED SPECTROSCOPY , 1968 .

[34]  E. Whalley,et al.  Infrared Spectra of Ices Ih and Ic in the Range 4000 to 350 cm—1 , 1964 .

[35]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[36]  R. E. Johnson,et al.  The ion environment near Europa and its role in surface energetics , 2002 .

[37]  D. Robinson,et al.  The librational spectra of water and heavy water in crystalline salt hydrates , 1961 .

[38]  Roger N. Clark,et al.  Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects , 1981 .

[39]  C. Chyba,et al.  Energy for microbial life on Europa , 2000, Nature.

[40]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[41]  Robert M. Nelson,et al.  Evidence for sulphur implantation in Europa's UV absorption band , 1981, Nature.

[42]  David J. Stevenson,et al.  Europa's Ocean--the Case Strengthens , 2000, Science.

[43]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[44]  John E. Bertie,et al.  Absorptivity of Ice I in the Range 4000–30 cm−1 , 1969 .

[45]  Keith S. Noll,et al.  The albedo spectrum of Europa from 2200 Å to 3300 Å , 1995 .

[46]  Robert E. Johnson,et al.  Photolysis and radiolysis of water ice on outer solar system bodies , 1997 .

[47]  D. B. Nash,et al.  Io's surface composition based on reflectance spectra of sulfur/salt mixtures and proton-irradiation experiments , 1977 .

[48]  W. Calvin,et al.  Condensed O2 on Europa and Callisto , 2002 .

[49]  J. Head,et al.  Evaluation of models for the formation of chaotic terrain on Europa , 2000 .

[50]  M. Kivelson,et al.  Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations , 2000 .

[51]  Christopher P. McKay,et al.  On the habitability of Europa , 1983 .

[52]  R. Greeley,et al.  Tyre and Pwyll: Galileo orbital remote sensing of mineralogy versus morphology at two selected sites on Europa , 2000 .

[53]  G. Hunt Visible and near-infrared spectra of minerals and rocks : I silicate minerals , 1970 .

[54]  T. McCord,et al.  Brines exposed to Europa surface conditions , 2002 .

[55]  R. Greeley,et al.  Geological history of the Tyre region of Europa: A regional perspective on Europan surface features and ice thickness , 2000 .

[56]  W. R. Thompson,et al.  A search for life on Earth from the Galileo spacecraft , 1993, Nature.

[57]  E. Whalley,et al.  Optical Spectra of Orientationally Disordered Crystals. II. Infrared Spectrum of Ice Ih and Ice Ic from 360 to 50 cm−1 , 1967 .

[58]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[59]  Jeffrey S. Kargel,et al.  Brine volcanism and the interior structures of asteroids and icy satellites , 1991 .

[60]  James H. Shirley,et al.  Discussion of the 1.04‐μm water ice absorption band in the Europa NIMS spectra and a new NIMS calibration , 1999 .

[61]  A. Lane,et al.  Chemical schemes for surface modification of icy satellites: A road map , 1997 .

[62]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[63]  F. Fanale,et al.  An experimental estimate of Europa's “ocean” composition independent of Galileo orbital remote sensing , 2001 .

[64]  S. Sandford,et al.  Mid- and far-infrared spectroscopy of ices: optical constants and integrated absorbances. , 1993, The Astrophysical journal. Supplement series.

[65]  James Charles Granahan,et al.  Hydrated salt minerals on Europa's surface from the Galileo near‐infrared mapping spectrometer (NIMS) investigation , 1999 .

[66]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[67]  John W. Salisbury,et al.  Infrared (2.1-25 μm) spectra of minerals , 1991 .

[68]  A. Lane,et al.  IUE's view of Callisto: Detection of an SO2 absorption correlated to possible torus neutral wind alterations , 1997 .

[69]  Roger N. Clark SPECtrum Processing Routines User's Manual Version 3 (program SPECPR) , 1993 .

[70]  T. McCord,et al.  Distributions of CO2 and SO2 on the surface of Callisto , 2000 .

[71]  T. McCord,et al.  Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions , 2001 .

[72]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[73]  G. Leto,et al.  Implantation of carbon and nitrogen ions in water ice , 2003 .

[74]  James K. Crowley,et al.  Visible and near‐infrared (0.4–2.5 μm) reflectance spectra of Playa evaporite minerals , 1991 .

[75]  Spencer,et al.  Temperatures on europa from galileo photopolarimeter-radiometer: nighttime thermal anomalies , 1999, Science.

[76]  Jeffrey S. Kargel,et al.  Thermal state and complex geology of a heterogeneous salty crust of Jupiter's satellite, Europa , 2005 .

[77]  E. Whalley A detailed assignment of the O–H stretching bands of ice I , 1977 .

[78]  J. B. Dalton,et al.  Near-infrared detection of potential evidence for microscopic organisms on Europa. , 2003, Astrobiology.

[79]  M. Moore,et al.  Radiation chemical alterations in solar system ices: An overview , 2001 .

[80]  A model of Europa's crustal structure: Recent Galileo results and implications for an ocean , 2001 .

[81]  A. Lane,et al.  Ice chemistry on the Galilean satellites , 1998 .

[82]  R. Carlson,et al.  Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate , 2005 .

[83]  R. Pierrehumbert,et al.  Hydrothermal plume dynamics on Europa: Implications for chaos formation , 2004 .

[84]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[85]  W. Smythe,et al.  Near-Infrared Mapping Spectrometer experiment on Galileo , 1992 .

[86]  J. Head,et al.  Brine mobilization during lithospheric heating on Europa: Implications for formation of chaos terrain, lenticula texture, and color variations , 1999 .

[87]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[88]  Cynthia B. Phillips,et al.  Europa as an Abode of Life , 2004, Origins of life and evolution of the biosphere.

[89]  W. H. Baur On the crystal chemistry of salt hydrates. II. A neutron diffraction study of MgSO4.4H2O , 1964 .

[90]  R. Pappalardo,et al.  Conamara Chaos Region, Europa: Reconstruction of mobile polygonal ice blocks , 1998 .

[91]  Kenneth L. Tanaka,et al.  Geologic mapping of Europa , 2000 .

[92]  D. Domingue,et al.  The Scattering Properties of Natural Terrestrial Snows versus Icy Satellite Surfaces , 1997 .

[93]  J. Spencer THE SURFACES OF EUROPA, GANYMEDE, AND CALLISTO: AN INVESTIGATION USING VOYAGER IRIS THERMAL INFRARED SPECTRA (JUPITER). , 1987 .

[94]  J. B. Dalton,et al.  Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design. , 2003, Astrobiology.

[95]  R. Greeley,et al.  Impact Features on Europa: Results of the Galileo Europa Mission (GEM) , 2001 .

[96]  The Salt of Europa , 1998, Science.

[97]  M. Manga,et al.  Causes, characteristics and consequences of convective diapirism on Europa , 2002 .

[98]  J. Kargel,et al.  Magnesium Sulfate-Water to 400 MPa Using a Novel Piezometer: Densities, Phase Equilibria, and Planetological Implications , 1995 .

[99]  Everett L. Shock,et al.  Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa , 2003 .

[100]  R E Johnson,et al.  Hydrogen peroxide on the surface of Europa. , 1999, Science.

[101]  P. Christensen,et al.  Thermal infrared analysis of weathered granitic rock compositions in the Sacaton Mountains, Arizona: Implications for petrologic classifications from thermal infrared remote-sensing data , 2004 .

[102]  Bernard Schmitt,et al.  The temperature‐dependent near‐infrared absorption spectrum of hexagonal H2O ice , 1998 .

[103]  R. E. Johnson,et al.  Sulfuric acid on Europa and the radiolytic sulfur cycle. , 1999, Science.

[104]  S. D. Kadel,et al.  Chaos on Europa , 1999 .

[105]  Marla H. Moore,et al.  Studies of proton-irradiated SO2 at low temperatures implications for Io , 1984 .

[106]  Paul G. Lucey,et al.  Temperature-Dependent Near-Infrared Spectral Properties of Minerals, Meteorites, and Lunar Soil , 2002 .