Distribution Matching in Variational Inference

With the increasingly widespread deployment of generative models, there is a mounting need for a deeper understanding of their behaviors and limitations. In this paper, we expose the limitations of Variational Autoencoders (VAEs), which consistently fail to learn marginal distributions in both latent and visible spaces. We show this to be a consequence of learning by matching conditional distributions, and the limitations of explicit model and posterior distributions. It is popular to consider Generative Adversarial Networks (GANs) as a means of overcoming these limitations, leading to hybrids of VAEs and GANs. We perform a large-scale evaluation of several VAE-GAN hybrids and analyze the implications of class probability estimation for learning distributions. While promising, we conclude that at present, VAE-GAN hybrids have limited applicability: they are harder to scale, evaluate, and use for inference compared to VAEs; and they do not improve over the generation quality of GANs.

[1]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[2]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[3]  Alexander A. Alemi,et al.  An Information-Theoretic Analysis of Deep Latent-Variable Models , 2017, ArXiv.

[4]  Kilian Q. Weinberger,et al.  On Calibration of Modern Neural Networks , 2017, ICML.

[5]  Peter Dayan,et al.  Comparison of Maximum Likelihood and GAN-based training of Real NVPs , 2017, ArXiv.

[6]  Yann LeCun,et al.  Energy-based Generative Adversarial Network , 2016, ICLR.

[7]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[8]  Max Welling,et al.  VAE with a VampPrior , 2017, AISTATS.

[9]  Christopher Burgess,et al.  DARLA: Improving Zero-Shot Transfer in Reinforcement Learning , 2017, ICML.

[10]  Bernhard Schölkopf,et al.  Wasserstein Auto-Encoders , 2017, ICLR.

[11]  Takafumi Kanamori,et al.  Density Ratio Estimation in Machine Learning , 2012 .

[12]  Aaron C. Courville,et al.  Adversarially Learned Inference , 2016, ICLR.

[13]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[14]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[15]  Daan Wierstra,et al.  One-Shot Generalization in Deep Generative Models , 2016, ICML.

[16]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[17]  David Pfau,et al.  Unrolled Generative Adversarial Networks , 2016, ICLR.

[18]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[19]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[20]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[21]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[22]  Andrew M. Dai,et al.  Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step , 2017, ICLR.

[23]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[24]  Max Welling,et al.  Semi-supervised Learning with Deep Generative Models , 2014, NIPS.

[25]  Oriol Vinyals,et al.  Neural Discrete Representation Learning , 2017, NIPS.

[26]  Matthias Bethge,et al.  A note on the evaluation of generative models , 2015, ICLR.

[27]  Daan Wierstra,et al.  Towards Conceptual Compression , 2016, NIPS.

[28]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[29]  Ferenc Huszár,et al.  Variational Inference using Implicit Distributions , 2017, ArXiv.

[30]  Yoshua Bengio,et al.  Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Hyunsoo Kim,et al.  Learning to Discover Cross-Domain Relations with Generative Adversarial Networks , 2017, ICML.

[32]  Zhou Wang,et al.  Multiscale structural similarity for image quality assessment , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[33]  Sebastian Nowozin,et al.  f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization , 2016, NIPS.

[34]  Dawn Xiaodong Song,et al.  Adversarial Examples for Generative Models , 2017, 2018 IEEE Security and Privacy Workshops (SPW).

[35]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[36]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[38]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[39]  Jonathon Shlens,et al.  Conditional Image Synthesis with Auxiliary Classifier GANs , 2016, ICML.

[40]  Mohammad Havaei,et al.  Learnable Explicit Density for Continuous Latent Space and Variational Inference , 2017, ArXiv.

[41]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[42]  He Ma,et al.  Quantitatively Evaluating GANs With Divergences Proposed for Training , 2018, ICLR.

[43]  Shakir Mohamed,et al.  Variational Approaches for Auto-Encoding Generative Adversarial Networks , 2017, ArXiv.

[44]  Raymond Y. K. Lau,et al.  Least Squares Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[45]  Charles A. Sutton,et al.  VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning , 2017, NIPS.

[46]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[47]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[48]  Lindsay I. Smith,et al.  A tutorial on Principal Components Analysis , 2002 .

[49]  Lawrence Carin,et al.  ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching , 2017, NIPS.

[50]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[51]  Ole Winther,et al.  Autoencoding beyond pixels using a learned similarity metric , 2015, ICML.

[52]  Masashi Sugiyama,et al.  Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation , 2012 .

[53]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[54]  Jukka Corander,et al.  Likelihood-Free Inference by Ratio Estimation , 2016, Bayesian Analysis.

[55]  Sebastian Nowozin,et al.  Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks , 2017, ICML.

[56]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[57]  Zhe Gan,et al.  Adversarial Symmetric Variational Autoencoder , 2017, NIPS.

[58]  Yann LeCun,et al.  Disentangling factors of variation in deep representation using adversarial training , 2016, NIPS.

[59]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[60]  M. Gutmann,et al.  Likelihood-free inference by penalised logistic regression , 2016 .

[61]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[62]  Shakir Mohamed,et al.  Learning in Implicit Generative Models , 2016, ArXiv.

[63]  S. Wood Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.

[64]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[65]  Ian J. Goodfellow,et al.  On distinguishability criteria for estimating generative models , 2014, ICLR.

[66]  Max Welling,et al.  Causal Effect Inference with Deep Latent-Variable Models , 2017, NIPS 2017.