Evaluation of the charge penetration energy between non-orthogonal molecular orbitals using the Spherical Gaussian Overlap approximation

Abstract An overlap dependent formula for evaluating the charge penetration energy between non-orthogonal molecular orbitals is derived using the Spherical Gaussian Overlap approximation. When combined with an accurate multipole representation of the electrostatic energy, such as in the effective fragment potential method, ab initio electrostatic energies are generally reproduced to within 0.2 kcal/mol for a variety of molecular dimers and basis sets. The only larger error is for the DMSO dimer, where the electrostatic energy is overestimated by 0.7 kcal/mol.