Theoretical calculations of β-lactam antibiotics

[1]  J. Donoso,et al.  Theoretical calculations of β‐lactam antibiotics. III. AM1, MNDO, and MINDO/3 calculations of hydrolysis of β‐lactam compound (azetidin‐2‐one ring) , 1992 .

[2]  A. Davis,et al.  Thiazolidine ring opening in penicillin derivatives. Part 2. Enamine formation , 1991 .

[3]  Jack B. Deeter,et al.  3-exo-methylenecephalosporins : structure and thermodynamics by experiment and theory , 1991 .

[4]  A. Lledós,et al.  Comparison of semiempirical and bsse corrected møller-plesset ab initio calculations on the direct addition of water to formaldehyde , 1990 .

[5]  Michael J. S. Dewar,et al.  AM1 parameters for sulfur , 1990 .

[6]  J. Mavri,et al.  Tautomerism, protonation, and interaction with formiate, of phenyliminoimidazoline and benzylimidazolidine: AM1 and ab initio 4–31G calculations , 1990 .

[7]  Donald B. Boyd,et al.  Molecular modeling of γ-lactam analogues of β-lactam antibacterial agents: synthesis and biological evaluation of selected penem and carbapenem analoques , 1989 .

[8]  J. Stewart,et al.  Numerical sensitivity of trajectories across conformational energy hypersurfaces from geometry optimized molecular orbital calculations: AM1, MNDO, and MINDO/3 , 1988 .

[9]  Hans Fritz,et al.  Are the known Δ2-cephems inactive as antibiotics because of an unfavourable steric orientation of their 4α-carboxylic group? Synthesis and biology of two Δ2-cephem-4β-carboxylic acids , 1987 .

[10]  A. Balsamo,et al.  Crystal and molecular structure of (3R)-3-(3-methyl-7-phenoxyacetamido-3-cephem-4-yl)-3-hydroxybutanoic acid , 1987 .

[11]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[12]  A. Schanck,et al.  Substituent effects on reactivity and spectral parameters of cephalosporins. , 1984, Journal of medicinal chemistry.

[13]  J. Fisher CHAPTER 2 – β-Lactams Resistant to Hydrolysis by the β-Lactamases , 1984 .

[14]  D B Boyd,et al.  Electronic structures of cephalosporins and penicillins. 15. Inductive effect of the 3-position side chain in cephalosporins. , 1984, Journal of medicinal chemistry.

[15]  D. B. Boyd Quantum Mechanics in Drug Design: Methods and Applications , 1983 .

[16]  D. B. Boyd Substituent effects in cephalosporins as assessed by molecular orbital calculations, nuclear magnetic resonance, and kinetics. , 1983, Journal of medicinal chemistry.

[17]  N. Cohen beta-Lactam antibiotics: geometrical requirements for antibacterial activities. , 1983, Journal of medicinal chemistry.

[18]  V. Rao,et al.  Conformation and activity of beta-lactam antibiotics. , 1983, CRC critical reviews in biochemistry.

[19]  J. Nishikawa,et al.  Relationships between structure and carbonyl stretching frequencies of the beta-lactam ring and the 7-acylamino group in 1-thia- and 1-oxa-cephem antibiotics. Importance of the bending angle of the C(4)-N(5) bond from plane C(6)-N(5)-C(8) in the beta-lactam ring. , 1982, The Journal of antibiotics.

[20]  T. Vasudevan,et al.  Preferred conformations and flexibility of aminoacyl side chain of penicillins , 1982 .

[21]  J. Frère,et al.  Δ2- and Δ3-cephalosporins, penicillinate and 6-unsubstituted penems. Intrinsic reactivity and interaction with β-lactamases and d-alanyl-d-alanine-cleaving serine peptidases , 1982 .

[22]  C. Glidewell,et al.  Substituent effects on the molecular and electronic structure of β-lactams , 1981 .

[23]  R. Scordamaglia,et al.  Ab initio study of β-lactam antibiotics. II. Potential energy surface for the amidic CN bond breaking in the 3-cephem + OH− reaction and comparison with the β-lactam + OH− reaction , 1980 .

[24]  R. Scordamaglia,et al.  Ab initio study of β-lactam antibiotics. I. Potential energy surface for the amidic CN bond breaking in the β-lactam + OH− reaction , 1980 .

[25]  C. Petrongolo,et al.  Ab initio Study of β-lactam antibiotics , 1979 .

[26]  D. B. Boyd Conformational analogy between beta-lactam antibiotics and tetrahedral transition states of a dipeptide. , 1979, Journal of medicinal chemistry.

[27]  J. Frère,et al.  Use of model enzymes in the determination of the mode of action of penicillins and delta 3-cephalosporins. , 1979, Annual review of biochemistry.

[28]  P. Gane,et al.  The structure of amoxycillin trihydrate and a comparison with the structures of ampicillin , 1978 .

[29]  M. Nardelli,et al.  Crystal and molecular structure of 4-acetyl-3-methyl-7β-phenoxyacetamido-Δ3-cephem , 1978 .

[30]  D. D. Dexter,et al.  Conformations of penicillin G: crystal structure of procaine penicillin G monohydrate and a refinement of the structure of potassium penicillin G. , 1978, Journal of the Chemical Society. Perkin transactions 1.

[31]  V. Rao,et al.  Theoretical studies on beta-lactam antibiotics. I. Conformational similarity of penicillins and cephalosporins to X-D-alanyl-D-alanine and correlation of their structure with activity. , 2009, International journal of peptide and protein research.

[32]  Walter Thiel,et al.  Ground States of Molecules. 39. MNDO Results for Molecules Containing Hydrogen, Carbon, Nitrogen, and Oxygen , 1977 .

[33]  Walter Thiel,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[34]  F. Durant,et al.  (2,6-Dimethoxyphenyl)penicillin methyl ester (methicillin methyl ester) , 1977 .

[35]  J. Frère,et al.  Occurrence of a serine residue in the penicillin‐binding site of the exocellular DD‐carboxy‐peptidase‐transpeptidase from Streptomyces R61 , 1976, FEBS letters.

[36]  R. J. Girven,et al.  The structures of ampicillin: a comparison of the anhydrate and trihydrate forms , 1976 .

[37]  G. Alagona,et al.  Ab initio study of the amidic bond cleavage by hydroxide(1-) ion in formamide , 1975 .

[38]  D. Presti,et al.  Electronic structures of cephalosporins and penicillins. 4. Modeling acylation by the beta-lactam ring. , 1975, Journal of medicinal chemistry.

[39]  Michael J. S. Dewar,et al.  Ground states of molecules. XXVIII. MINDO/3 calculations for compounds containing carbon, hydrogen, fluorine, and chlorine , 1975 .

[40]  Michael J. S. Dewar,et al.  Ground states of molecules. XXVI. MINDO/3 calculations for hydrocarbons , 1975 .

[41]  Michael J. S. Dewar,et al.  Ground states of molecules. XXVII. MINDO/3 calculations for carbon, hydrogen, oxygen, and nitrogen species , 1975 .

[42]  C. A. Ramsden,et al.  Ground states of molecules. XXIX. MINDO/3 calculations of compounds containing third row elements , 1975 .

[43]  Michael J. S. Dewar,et al.  Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method , 1975 .

[44]  C. Dobson,et al.  Nuclear magnetic resonance study of the conformations of penicillins in solution using lanthanide ion probes , 1975 .

[45]  E. Paulus 3-Methyl-2,4-dicarbomethoxy-Δ3-cephem , 1974 .

[46]  J. I. Brauman,et al.  GAS-PHASE NUCLEOPHILIC DISPLACEMENT REACTIONS , 1974 .

[47]  W. J. Wheeler,et al.  Substituent effects upon the base hydrolysis of penicillins and cephalosporins. Competitive intramolecular nucleophilic amino attack in cephalosporins. , 1974, Journal of medicinal chemistry.

[48]  W. Topp,et al.  CNDO [complete neglect of differential overlap]/2 study of the antibacterial activity of penicillins and cephalosporins , 1974 .

[49]  R. Hermann,et al.  Structure-activity correlations in the cephalosporin C series using extended Hückel theory and CNDO-2. , 1973, The Journal of antibiotics.

[50]  James W. McIver,et al.  Structure of transition states in organic reactions. General theory and an application to the cyclobutene-butadiene isomerization using a semiempirical molecular orbital method , 1972 .

[51]  R M Sweet,et al.  Molecular architecture of the cephalosporins. Insights into biological activity based on structural investigations. , 1970, Journal of the American Chemical Society.

[52]  R. Mueller,et al.  Chemistry of cephalosporin antibiotics. XV. Transformations of penicillin sulfoxide. A synthesis of cephalosporin compounds. , 1969, Journal of the American Chemical Society.

[53]  N. D. Jones,et al.  Structural studies on penicillin derivatives. I. The configuration of phenoxymethyl penicillin sulfoxide. , 1969, Journal of the American Chemical Society.

[54]  William C. Davidon,et al.  Variance Algorithm for Minimization , 1968, Comput. J..

[55]  D J Tipper,et al.  Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. E. Page,et al.  303. Cephalosporanic acids. Part I. Infrared absorption and proton magnetic resonance spectra of cephalosporin and pencillin analogues , 1965 .

[57]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[58]  D. Hodgkin,et al.  The crystal structure of phenoxymethylpenicillin. , 1963, The Biochemical journal.

[59]  R. K. Nesbet,et al.  Self‐Consistent Orbitals for Radicals , 1954 .

[60]  G. J. Pitt A refinement of the crystal structure of potassium benzylpenicillin , 1952 .