Encoding Large RCC8 Scenarios Using Rectangular Pseudo-Solutions

Most approaches in the field of qualitative spatial reasoning (QSR) use constraint networks to encode spatial scenarios. The size of these networks is quadratic in the number of variables, which has severely limited the real-world application of QSR. In this paper, we propose another representation of spatial scenarios, in which each variable is associated with one or more rectangles. Instead of requiring these rectangles to define a solution of the corresponding constraint network, we construct sequences of rectangles that define partial solutions to progressively weaker constraint networks. We present experimental results that illustrate the effectiveness of this strategy.

[1]  Jean-François Condotta,et al.  An Efficient Approach for Tackling Large Real World Qualitative Spatial Networks , 2016, Int. J. Artif. Intell. Tools.

[2]  Steven Schockaert,et al.  Mining Topological Relations from the Web , 2008, 2008 19th International Workshop on Database and Expert Systems Applications.

[3]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning , 2008, Handbook of Knowledge Representation.

[4]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[5]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[6]  Stephan Winter,et al.  Locating place names from place descriptions , 2013, Int. J. Geogr. Inf. Sci..

[7]  Peter van Beek,et al.  Exact and approximate reasoning about temporal relations 1 , 1990, Comput. Intell..

[8]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[9]  Luis Fariñas del Cerro,et al.  A New Tractable Subclass of the Rectangle Algebra , 1999, IJCAI.

[10]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[11]  Steven Schockaert,et al.  Indexing large geographic datasets with compact qualitative representation , 2016, Int. J. Geogr. Inf. Sci..

[12]  Peter B. Ladkin,et al.  On binary constraint networks , 1989 .

[13]  M. Egenhofer Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases , 1998 .

[14]  P. Vanbeek Reasoning about qualitative temporal information , 1992 .

[15]  Paolo Fogliaroni Qualitative spatial configuration queries: towards next generation access methods for GIS , 2012 .

[16]  Rami Al-Salman,et al.  Qualitative Spatial Query Processing: Towards Cognitive Geographic Information Systems , 2014 .

[17]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[18]  Henry A. Kautz,et al.  Constraint Propagation Algorithms for Temporal Reasoning , 1986, AAAI.

[19]  Anthony G. Cohn,et al.  REASONING WITH TOPOLOGICAL AND DIRECTIONAL SPATIAL INFORMATION , 2009, Comput. Intell..

[20]  R. K. Goyal,et al.  The Direction-Relation Matrix : A Representation for Direction Relations between Extended Spatial Objects , 2014 .

[21]  TheodoridisYannis,et al.  Topological relations in the world of minimum bounding rectangles , 1995 .

[22]  Sanjiang Li,et al.  On Distributive Subalgebras of Qualitative Spatial and Temporal Calculi , 2015, COSIT.

[23]  Anthony G. Cohn,et al.  The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries , 2020 .

[24]  Alfonso Gerevini,et al.  Incremental qualitative temporal reasoning: Algorithms for the Point Algebra and the ORD-Horn class , 2005, Artif. Intell..

[25]  Christoph Schlieder,et al.  Intuitive Modelling of Place Name Regions for Spatial Information Retrieval , 2003, COSIT.

[26]  Terence R. Smith,et al.  Algebraic approach to spatial reasoning , 1992, Int. J. Geogr. Inf. Sci..

[27]  Sanjiang Li,et al.  On redundant topological constraints , 2014, Artif. Intell..